• Title/Summary/Keyword: seismic isolation

Search Result 527, Processing Time 0.028 seconds

Study on seismic response of a seismic isolation liquid storage tank

  • Xiang Li;Jiangang Sun;Lei Xu;Shujin Zhang;Lifu Cui;Qinggao Zhang;Lijie Zhu
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.337-348
    • /
    • 2024
  • This paper presents a new seismic isolation design for liquid storage tank (LST). The seismic isolation system includes: LST, flexible membrane, sand mat and rolling seismic isolation devices. Based on the mechanical equilibrium theory, the symmetric concave rolling restoring force model of the isolation device is derived. Based on the elasticity theory and restoring force model of the seismic isolation, a simplified mechanical model of LST with the new seismic isolation is established. The rationality of the seismic isolation design of LST is explored. Meanwhile, the seismic response of the new seismic isolation LST is investigated by numerical simulation. The results show that the new seismic isolation tank can effectively reduce the seismic response, especially the control of base shear and overturning moment, which greatly reduces the risk of seismic damage. The seismic reduction rate of the new seismic isolation storage tanks in Class I, II, and III sites is better than that in Class IV sites. Moreover, the seismic isolation device can effectively control the ground vibration response of storage tanks with different liquid heights. The new seismic isolation LST design provides better isolation for slender LSTs than for broad LSTs.

Application of Mid-story Isolation System for Seismic Response Reducing of Dome Structure (돔 구조물의 지진응답 저감을 위한 중간 면진장치의 적용)

  • Kim, Gee-Cheol;Kim, Su-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.37-44
    • /
    • 2016
  • The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of dome structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.

Conceptual Application Schemes of Seismic Isolation Techniques to Hanok (한옥의 면진기법 적용 방안에 대한 개념적 고찰)

  • Park, Bum-Soo;Kim, Yeong-Min;Hur, Moo-Won;Lee, Sang-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, various application schemes of seismic isolation system which can be applied to Hanok have been studied by analyzing its structural characteristics under seismic load. Structural stability of Hanok is more required against seismic load as Hanok becomes long-spanned and multi-storied. To meet this goal, it becomes necessary to study more advanced technology such as seismic isolation design as well as seismic control design and seismic resistant design suitable to Hanok. Seismic isolation systems have been successfully applied to RC and steel structures to improve structural performance during earthquakes. Based on these previous study, we proposed four application schemes of seismic isolation design suitable for Hanok and analyzed their structural characteristics and applicability to Hanok in conceptual level based on its structural characteristics. The proposed four schemes are base isolation method, ground isolation method, roof isolation method and intermediate-story isolation method. The applicability of the proposed method was evaluated by performing boundary nonlinear dynamic analysis to the typical Hanok for the two types of isolation method, that is, ground isolation method and roof isolation method, and the results showed that the proposed methods produced good performance enough to be applied to Hanok.

Development of Guidelines for seismic isolation Design of LMR (액체금속로 면진설계를 위한 지침서 개발)

  • Yoo, Bong;Koo, Gyeong-Hoi;Lee, Jae-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.147-154
    • /
    • 1998
  • The purpose of this paper is to propose the draft guidelines of seismic isolation design of Liquid Metal Reactor (LMR) using high damping laminated rubber bearings. The scopes of guidelines include design requirements of a seismically isolated system and components, seismic isolator, isolation system, interface system between seismic isolation and non-seismic isolation part, qualification and acceptance tests of seismic isolator, seismic isolation reliability, and seismic safety and monitoring system. Proposed guidelines shall be revised to extend to general design guideline for nuclear facilities by further research and discussions.

  • PDF

Seismic Isolation and Response Control of Buildings in Japan

  • Masahiko Higashino;Yoshihisa Kitamura;Nagahide Kani
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.299-306
    • /
    • 2023
  • An overview of seismic isolation and structural control in Japan is presented. The paper includes a mention of the history of aseismic technology and the earthquake threat in Japan, summarizes the merits of seismic isolation and response control, and discusses the types of devices used and some recent project examples. The projects presented are mostly examples of response control used for high-rise buildings. These types of buildings are not amendable to seismic isolation, and are a challenge to applying damping devices, as their high aspect ratio means that their dominant deformation mode is bending. Japanese engineers have developed a range of unique techniques to apply response control to these types of structures. Concluding remarks discuss some of the current challenges to expanding the use of seismic isolation and response control technologies.

Evaluation of Performance of the Teflon-Type Seismic Foundation Isolation System (테프론형 기초지진격리장치의 성능평가)

  • Son, Su Won;Kim, Eung Soo;Na, Geon Ha;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.125-135
    • /
    • 2017
  • Various seismic isolation methods are being applied to bridges and buildings to improve their seismic performance. Most seismic isolation systems are the structural seismic isolation systems. In this study, the seismic performance of geotechnical seismic isolation system capable of isolating the lower foundation of the bridge structure from ground was evaluated. The geotechnical seismic isolation system was built with teflon, and the model structure was made by adopting the similitude law. The response acceleration for sinusoidal waves of various amplitudes and frequencies and seismic waves were analyzed by performing 1-G shaking table experiments. Fixed foundation, Sliding foundation, and Rocking foundation were evaluated. The results of this study indicated that the Teflon-type seismic foundation isolation system is effective in reducing the acceleration transmitted to the superstructure subject to large input ground motion. Response spectrum of the Rocking and Sliding foundation structures moves to the long period, while that of Fixed foundation moves to short period.

An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device (중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석)

  • Kang, Joo-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

Seismic Isolation Effects According to Set up the Isolation Period in the Medium and Low-rise Framed Building (중.저층골조에서 면진주기 설정에 따른 면진효과)

  • Chun, Young-Soo;Hur, Moo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.93-99
    • /
    • 2010
  • Seismic isolation offers an attractive approach for reducing seismic loads in the building and its components. This paper deals with the seismic isolation effects due to variation in period ratio between superstructure and isolation layer of the building. Seismic isolation effects of the moment-resisting frames with the various period ratio were studied by nonlinear time history analysis, and the guidelines on the stiffness ratio of the superstructure and isolation layer of the building for the effective seismic isolation follow from the results of this study. It is recommended that the isolation period should be greater than 2.5 times of that of the superstructure for the effective seismic isolation.

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Seismic performance and design of bridge piers with rocking isolation

  • Chen, Xingchong;Xia, Xiushen;Zhang, Xiyin;Gao, Jianqiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Seismic isolation technology has a wide application to protect bridges from earthquake damage, a new designed bridge pier with seismic isolation are provided for railways in seismic regions of China. The pier with rocking isolation is a self-centering system under small and moderate earthquakes, and the unbonded prestressed tendons are used to prevent overturning under strong earthquakes. A numerical model based on pseudo-static testing results is presented to evaluate the seismic performance of isolation bridge piers, and is validated by the shaking table test. It is found that the rocking response and the loss of prestressing for the bridge pier increase with the increase of earthquake intensity. Besides, the intensity and spectral characteristics of input ground motion have great influence on displacement of the top and bottom of the bridge pier, while have less influence on the bending moment of the pier bottom. Experimental and numerical results show that the rocking-isolated piers presented in this study have good seismic performance, and it provides an alternative way for the railway bridge in the regions with high occurrence of earthquakes. Therefore, we provide the detailed procedures for seismic design of the rocking-isolated bridge pier, and a case study of the seismic isolation design with rocking piers is carried out to popularize the seismic isolation methods.