• 제목/요약/키워드: seismic isolated structure

검색결과 170건 처리시간 0.02초

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

EQS 면진장치의 항복 후 강성을 고려한 면진 원전구조물의 지진응답 (Seismic Responses of Seismically Isolated Nuclear Power Plant Structure Considering Post-Yield Stiffness of EQS Bearing)

  • 김병수;송종걸
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.319-329
    • /
    • 2016
  • The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.

건물기초의 절연이 내부수중구조물의 지진응답에 미치는 영향 (Influence of Building Base-Isolation on Seismic Response of Submerged Internal Systems)

  • 신태명
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.125-134
    • /
    • 1996
  • 건물기초를 지진절연하면 건물뿐만 아니라 그 내부구조물의 지진응답도 크게 감소한다는 사실이 많은 연구를 통해 확인되어 왔다. 그런데 이러한 내부구조물이 유체내에 잠기고 부가질량효과가 크게 작용되는 조건에 놓이는 경우 오히려 지진응답이 증가할 수 있다. 본 논문은 건물 내 수중구조물의 지진해석을 통해 그러한 예를 제시하고자 한다. 해석결과 지진절연된 건물의 경우 이러한 내부 수중구조물의 지진응답이 상당히 증가할 수 있기 때문에 이에 대한 조치가 필요함을 보였고, 적절한 설계에 의하여 부가질량효과를 조절함으로써 어느정도 응답을 줄일 수 있다는 사실을 알 수 있었다.

  • PDF

개구부 격리형 시스템으로 보강된 철근콘크리트 골조의 내진성능 (Seismic Performance of Reinforced Concrete Frame Retrofitted with Opening-Isolated Type System)

  • 박완신;김선우;정현석
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.137-144
    • /
    • 2020
  • The purpose of this study is to experimentally evaluate the effect of improving seismic performance by applying the details of seismic reinforcement to the reinforced concrete frame with non-seismic details while maintaining the original opening shape. In this study, based on CF specimens with specific seismic details, a total of four full scale specimens were designed and fabricated. The main variables are the width and spacing of steel dampers installed in the upper and lower parts of seismic reinforcement details, and the presence or absence of torsion springs installed in the hinges. As a result of the test, it was evaluated to be helpful for seismic retrofit and opening isolation of steel dampers installed at the upper and lower parts of the seismic reinforcement details and torsion springs installed at the joints. In particular, CFR2S specimens with torsion springs showed the best performance in terms of strength, stiffness and energy dissipation capacity with increasing displacement angle.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

Effect of nonlinear soil-structure interaction on the seismic performance of 3D isolated transformers when scaling the response spectra using the improved wavelet method

  • Mohammad Mahmoudi;Abbas Ghasemi;Shahriar Tavousi Tafreshi
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.469-486
    • /
    • 2024
  • Electric transformers are major components of electrical systems, and damage to them caused by earthquakes can result in significant financial loss. The current study modeled a three-dimensional (3D) isolated electrical transformer under horizontal and vertical records from different earthquakes. Instead of using fixed coefficients, an improved wavelet method has been used to create the greatest compatibility between the response spectra and the target spectrum. This method has primarily been used for dynamic analysis of isolated structures with spring-damper devices because it has shown greater accuracy in predicting the response of such structures. The effect of the nonlinear soil-structure interaction on the probability of transformer failure also has been investigated. Soil and structure interaction modeling was carried out using a beam on a nonlinear Winkler foundation. The effect of the nonlinear soil-structure interaction during dynamic analysis of transformers revealed that the greatest increase in the probability of transformer failure was in the fixed-base condition when the structure was located on soft soil. This intensified the response of the structure and increased the probability of transformer failure by up to 27% for far-field and up to 95% for near-field ground motions. A comparison of the results indicates that the use of 3D isolation systems in transformers in areas with soft clay that are subject to near-field ground motions can strongly reduce the probability of failure and improve the seismic performance of the transformer.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.

LRB 면진 콘크리트 교량의 손상도 해석 (Fragility Analyses on Seismic Isolated LRB Concrete Bridges)

  • 김종인;김두기;김태형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.135-144
    • /
    • 2006
  • 지진에 대한 구조물의 특성, 지반과의 상호작용, 현장 조건 등의 예측에 다수의 불확실성이 존재하는 경우 그 취약성 또는 손상도를 평가하는 방법이 필요하다. 본 연구에서는 범용구조해석 프로그램과 일반적인 확률밀도함수를 사용하여 면진 콘크리트 교량의 손상도 곡선을 구하는 방법을 제시하였으며, 제시된 방법을 교량에 적용하여 교량의 손상도를 평가하였다. 손상도 곡선을 작성하는 데에는 2변수를 갖는 대수정규분포를 사용하였으며, 지진의 여러 특성인 최대지반가속도(PGA), 최대지반속도(PGV), 스펙트럼가속도(SA), 스펙트럼속도(SV), 스펙트럼강도(SI) 등에 대해 납 면진받침(LRB)이 설치된 면진교량의 손상도 곡선을 구하였다. 또한 손상도 곡선의 합성 방법을 사용하여 합성된 면진교량의 손상도 곡선을 유도하였다.