• Title/Summary/Keyword: seismic fragility

Search Result 428, Processing Time 0.019 seconds

Seismic Fragility Analysis of Lightning Arrester Considering Various Damage States (다양한 손상상태를 반영한 피뢰기 설비의 지진취약도 해석)

  • Shin, Yooseong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The seismic evaluation of electric power facilities in the switchyard of nuclear power plants is currently insufficient. In order to evaluate the seismic performance of lightning arrester subjected to four types of earthquake (near- and far-fault earthquakes, NEHRP Site Class A&B and D earthquakes), seismic fragility analysis using maximum likelihood estimation is performed considering various damage states. The comparison of the seismic fragility curves for three main parts of lightning arrester that are the busing, anchor and steel frame, reveals that the failure of lightning arrester is governed by the bushing damage mode such as porcelain cracking.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

Dynamic Behavior and Seismic Fragility Analysis of Shallow Foundation Bridge Considering Scour (세굴을 고려한 얕은 기초 교량의 동적거동 분석 및 지진 취약도 해석)

  • Kim, Na-Yeon;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.79-89
    • /
    • 2016
  • If scour is occurred at shallow foundation of bridge, seismic performance of the bridge will be reduced. In order to evaluate accurate seismic response of bridge according to scour depths, modeling of foundation reflecting scour effect is important. In this study, taking into account the effect of the reduction in embedment depth of the shallow foundation by scouring, the soil around the foundation is modelled as an equivalent soil spring with various stiffness. Seismic fragility analyses for 3 types of bridges subjected to 4 types of ground motions classified into Site Class A, B, C, D are evaluated according to several scour depths. From the fragility analysis results, it can be observed that the deeper the scour depth, the higher probability of exceeding damage states. Also, seismic failure probability of asymmetric bridge is higher than that of symmetric bridge.

Seismic Fragility Functions of a SDOF Nonlinear System with an Energy Dissipation Device (에너지 소산형 감쇠기가 설치된 단자유도 비선형 시스템의 지진취약도 함수)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • Seismic fragility functions are derived for probabilistic evaluation of seismic control performance of energy dissipation devices installed in reinforced concrete structures. Displacement-dependent dampers are added to the nonlinear single-degree-of-freedom systems with different natural periods and hysteretic characteristics of which stiffness and strength has uncertainty. Nonlinear time history analysis is conducted for those SDOF systems and the result is processed statistically to obtain seismic fragility functions in the form of log normal distribution. Variation of seismic fragility functions for different parameters of SDOF systems and dampers are investigated and the seismic control performance is assessed probabilistically.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Application of Conditional Spectra to Seismic Fragility Assessment for an NPP Containment Building based on Nonlinear Dynamic Analysis (조건부스펙트럼을 적용한 원전 격납건물의 비선형 동적 해석 기반 지진취약도평가)

  • Shin, Dong-Hyun;Park, Ji-Hun;Jeon, Seong-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.179-189
    • /
    • 2021
  • Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.