• 제목/요약/키워드: seismic failure characteristics

검색결과 134건 처리시간 0.031초

2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석 (Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions)

  • 김상효;마호성;이상우;김영훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구 (A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve)

  • 하익수
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

고진동수 지진에 대한 기기 정착부의 비탄성 거동을 고려한 지진취약도 평가 (Seismic Fragility Analysis Considering the Inelastic Behavior of Equipment Anchorages for High-Frequency Earthquakes)

  • 임승현;곽신영;최인길;정재욱;김석철
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.261-266
    • /
    • 2021
  • Nuclear power plants in Korea were designed and evaluated based on the NRC's Regulatory Guide 1.60, a design response spectrum for nuclear power plants. However, it can be seen that the seismic motion characteristics are different when analyzing the Gyeongju earthquake and the Pohang earthquake that has recently occurred in Korea. Compared to the design response spectrum, seismic motion characteristics in Korea have a larger spectral acceleration in the high-frequency region. Therefore, in the case of equipment with a high natural frequency installed in a nuclear power plant, seismic performance may be reduced by reflecting the characteristics of domestic seismic motions. The failure modes of the equipment are typically structural failure and functional failure, with an anchorage failure being a representative type of structural failure. In this study, comparative analyses were performed to decide whether to consider the inelastic behavior of the anchorage or not. As a result, it was confirmed that the seismic performance of the anchorages could be increased by considering the inelastic behavior of an anchorage.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • 한국지반환경공학회 논문집
    • /
    • 제22권7호
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

지진하중 및 교량구조물의 확률적 특성을 고려한 받침손상위험도 분석 (Bearing Damage Analysis of Bridges Considering the Probabilistic Characteristics of Earthquake and Structural Properties)

  • 김상효;마호성;이상우;김철환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.346-353
    • /
    • 2002
  • The risk of bearing failure is evaluated through the seismic response analysis of a bridge considering the probabilistic characteristics of structural properties such as the mass of superstructure, the stiffness of pier, and the translational and rotational stiffness of the foundation as well as seismic loadings during the bridge service lift. The effect of pounding between adjacent vibration units on the risk of bearing failure is also investigated. The probabilistic characteristics of structural properties are obtained by the Monte Carlo simulations based on the probabilistic characteristics of basic random variables included in the structural properties. From the simulation results, the failure probability of fixed bearings attached on the abutment is found to be much higher than those placed on the piers. It is also found that the pounding effect significantly increases the failure probability of bearings. In the simply supported bridges, the risk of bearing failure increases as the number of bridge spans increase. Therefore, the failure probability of fixed bearing due to the effects of pounding phenomena and the number of bridge spans should be considered in the seismic desist of bearings.

  • PDF

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.

관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구 (Seismic Performance of Precast Beam-Column Joints with Thru-Connectors)

  • 박석준;박순규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.83-84
    • /
    • 2010
  • 선행연구에서는 새로운 PC접합방식을 고안하여 실험을 실시하였다. 실험결과 비부착 긴장재의 특성 때문에 모든 실험체가 보 단부의 압축파괴 양상을 보였다. 따라서 본 연구는 압축력을 견디기 위하여 콘크리트 횡구속 보강근, 주근의 dog-boned를 변수로 실험체를 설계하였고, 더불어 향상된 내진성능을 확보하기 위한 목표로 실험연구를 수행하였다. 실험결과 주근 항복은 없었으며 횡구속 보강근의 영향으로 선행연구보다 내진성능이 우수한 것으로 나타났다.

  • PDF

지진발생시 교량형식에 따른 낙교위험도 분석 (Analysis of Unseating Failure of Various Types of Bridge Spans under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.123-130
    • /
    • 1998
  • The probability of unseating failure of the bridge spans under earthquakes is investigated. Seismic excitations are simulated as nonstationary processes by combining a stationary process and an intensity function. For computational convenience, a simplified single-degree-of-freedom model is adopted, which retains the dynamic characteristics of the original brige motion in concern. The time history analysis for the developed single degree-of-freedom model are carried out to evaluate the response processes, and the probabilistic characteristics of response displacements are evaluated. The reliability analysis of the bridge against the unseating failure is performed with the statistical information of the maximum displacements of responses.

  • PDF