• Title/Summary/Keyword: seismic events

Search Result 323, Processing Time 0.025 seconds

Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum (설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In the nonlinear response history analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structural systems. As the properties of the ground motion, using time history analysis, are interrelated with many factors such as the fault mechanism, the seismic wave propagation from source to site, and the amplification characteristics of the soil, it is difficult to properly select the input ground motions for seismic response analysis. In this paper, the most unfavourable real seismic design ground motions were selected as input motions. The artificial earthquake waves were generated according to these earthquake events. The artificial waves have identical phase angles to the recorded earthquake waves, and their overall response spectra are compatible with the seismic design spectrum with 5% of critical viscous damping. It is concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Discrimination between Earthquakes and Explosions Recorded by the KSRS Seismic Array in Wonju, Korea (원주 KSRS 지진 관측망에 기록된 지진과 폭발 식별 연구)

  • Jeong, Seong Ju;Che, Il-Young;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.137-146
    • /
    • 2014
  • This study presents a procedure for discrimination of artificial events from earthquakes occurred in and around the Korean Peninsula using data set in the Wonju KSRS seismograph network, Korea. Two training sets representing natural and artificial earthquakes were constructed with 150 and 56 events, respectively, with high signal to noise ratio. A frequency band, Pg(4-6 Hz)/Lg(5-7 Hz), which is optimal for the discrimination of seismic sources was derived from the two-dimensional grid of Pg/Lg spectral amplitude ratio. The corrections for the effects of earthquake magnitude and hypocentral distance were carried out for improvement of discrimination capability. For correcting the effect of magnitude dependence due to the inverse proportionality of corner frequency to seismic moment, the Brune's source spectrum was subtracted from the observation spectrum. The spectrum was corrected using the optimal damping coefficient to remove damping effect with the hypocentral distance. The effect of locally varying spectrum ratio was cancelled correcting variation of wave propagation along the ray path. The performance in discrimination between training sets of natural and artificial events was compared using the Mahalanobis distance in each step of correction. The procedure of magnitude, distance, and path corrections show clear improvements of the discrimination results with increasing Mahalanobis distance, from 1.98 to 3.01, between two training sets.

Effective Wavefield Separation of Reflected P- and PS-Waves in Multicomponent Seismic Data by Using Rotation Transform with Stacking (다성분 탄성파탐사자료에서 회전 변환과 중합을 이용한 효과적인 P파 반사파와 PS파 반사파의 분리)

  • Jeong, Soocheol;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.6-17
    • /
    • 2013
  • Multicomponent seismic data including both P- and PS-waves have advantages in discriminating the type of pore fluid, characterizing the lithologic attributes and producing the high resolution image. However, multicomponent seismic data recorded at the vertical and horizontal component receivers contain both P- and PS-waves which have different features, simultaneously. Therefore, the wavefield separation of P- and PS-waves as a preprocessing is inevitable in order to use the multicomponent seismic data successfully. In this study, we analyzed the previous study of the wavefield separation method suggested by Jeong and Byun in 2011, where the approximated reflection angle calculated only from one refernce depth is used in rotation transform, and showed its limitation for seismic data containing various reflected events from the multi-layered structure. In order to overcome its limitation, we suggested a new effective wavefield separation method of P- and PS-waves. In new method, we calculate the reflection angles with various reference depths and apply rotation transforms to the data with those reflection angles. Then we stack all results to obtain the final separated data. To verify our new method, we applied it to the synthetic data sets from a multi-layered model, a fault model, and the Marmousi-2 model. The results showed that the proposed method separated successfully P- and PS-reflection events from the multicomponent data from mild dipping layered model as long as the dip is not too steep.

Non-linear performance analysis of existing and concentric braced steel structures

  • Erdem, R. Tugrul
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • Since there are several places located in active seismic zones in the world, serious damages and losses have happened due to major scaled earthquakes. Especially, structures having different irregularities have been severely damaged or collapsed during these seismic events. Behavior of existing structures under several loading conditions is not completely determined due to some uncertainties. This situation reveals the importance of design and analysis of structures under seismic effects. Several non-linear static procedures have been developed in recent years. Determination of the seismic safety of the existing structures and strengthening techniques are significant civil engineering problems Non-linear methods are defined in codes to determine the performance levels of structures more accurately. However, displacement based ones give more realistic results. These methods provide more reliable evaluation possibilities for existing structures with developing computer technology. In this study, non-linear performance analysis of existing and strengthened steel structures by X shaped bracing members with 3, 5 and 7 stories which have soft story irregularity is performed according to FEMA-356 and Turkish Earthquake Code-2007. Damage ratios of the structural members and global performance levels are determined as well as modal properties and story drift ratios after non-linear finite elements analysis for each structure.

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

On the variability of strong ground motions recorded from Vrancea earthquakes

  • Pavel, Florin;Vacareanu, Radu;Arion, Cristian;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The main focus of this paper is the analysis of the different components of the variability for strong ground motions recorded from earthquakes produced by the Vrancea subcrustal seismic source. The analysis is performed for two ground motion prediction equations: Youngs et al. (1997) and Zhao et al. (2006), recommended within the SHARE project for the Vrancea subcrustal seismic source and which are proposed in the work of Delavaud et al. (2012) and graded best in Vacareanu et al. (2013c). The first phase of the analysis procedure consists of a grading procedure. In the second phase, the single station sigma procedure is applied for both attenuation models in order to reduce some parts of ground motion models' variability produced by the ergodic assumption. The strong ground motion database which is used throughout the study consists of over 400 accelerograms recorded from 9 Vrancea intermediate-depth seismic events. The results of the single station sigma analysis show significant reduction of the standard deviations, especially in the case of the Youngs et al. (1997) attenuation model, which is also graded better than the other selected GMPE.

Effect of near and far-field earthquakes on RC bridge with and without damper

  • Soureshjani, Omid Karimzade;Massumi, Ali
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.533-543
    • /
    • 2019
  • This paper presents a study on the behavior of an RC bridge under near-field and far-field ground motions. For this purpose, a dynamic nonlinear finite element time history analysis has been conducted. The near-field and far-field records are chosen pairwise from the same events which are fits to the seismic design of the bridge. In order to perform an accurate seismic evaluation, the model has been analyzed under two vertical and horizontal components of ground motions. Parameters of relative displacement, residual displacement, and maximum plastic strain have been considered and compared in terms of near-field and far-field ground motions. In the following, in order to decrease the undesirable effects of near-field ground motions, a viscous damper is suggested and its effects have been studied. In this case, the results show that the near-field ground motions increase maximum relative and residual displacement respectively up to three and twice times. Significant seismic improvements were achieved by using viscous dampers on the bridge model. Somehow under the considered near-field ground motion, parameters of residual and relative displacement decrease dramatically even less than the model without damper under the far-field record of the same ground motion.

Seismic Response Control of Building Structures using Semiactive Smart Dampers (준능동 스마트 감쇠기를 사용한 빌딩구조물의 지진응답제어)

  • Kim Hyun-Su;Raschke Paul N.;Lee Dang-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.451-458
    • /
    • 2006
  • The goal of many researchers in the field of structural engineering is to reduce both damage to building structures and discomfort of their inhabitants during strong motion seismic events. The present paper reports on analytical work conducted with this aim in mind as a prior research of experimental study. A four-story, 6.4 m tall, laboratory model of a building is employed as a example structure. The laboratory structure has graphite epoxy columns and each floor is equipped with a chevron brace that serves to resist inter-story drift with the installation of a magnetorheological (MR) damper. An artificial excitation has been generated with a robust range of seismic characteristics. A series of numerical simulations demonstrates that an optimized fuzzy controller is capable of robust performance for a variety of seismic base motions. Optimization of the fuzzy controller is achieved using multi-objective genetic algorithm(MOGA), i.e. NSGA-II. Multiple objective functions are used in order to reduce both peak and root-means-squared displacement and accelerations at the floor levels of the building.

  • PDF

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.

Seismic Moment Tensor and Its Inversion : An Overview (지진모멘트 Tensor와 전환 : 개요)

  • 김소구;우종량
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.215-231
    • /
    • 1995
  • The key concepts of seismic moment tensor are introduced in a 'physicist - oriented' style. The theory and application of seismic moment tensor which have been developed since the 1970s have become one of the most important branches in modern seismology. The description of earthquake sources in the modern seismology have led to much deeper understanding of the physics of indigenous earthquakes as well as various kinds of artificial seismic events, such as underground explosions, mining rockbursts, and reservoir induced tremors. Furthermore, with the development of digital seismological observation, some concepts, which were not included in 'classical' seismology, or not so important in 'classical' seismology, has become more and more important. It seems that it has been the time to have a new look at the fundamentals of seismology as a branch of applied physics, especially the part dealing with the physics of earthquake sources. Also in this field it may be important to clarify some fundamental concepts which, unexpectedly, have caused confusions even among professionals.

  • PDF