• Title/Summary/Keyword: seismic engineering

Search Result 5,789, Processing Time 0.035 seconds

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

Seismic collapse probability of eccentrically braced steel frames

  • Qi, Yongsheng;Li, Weiqing;Feng, Ningning
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • To quantitatively assess the safety against seismic collapse of eccentrically braced steel frame (EBSF) system, 24 typical EBSFs with K-shape and V-shape braces with seismic precautionary intensities 8 and 9 were designed complying with China seismic design code and relative codes to constitute archetype space of this structure system. In the archetype space, the collapse probability of the structural system under maximum considered earthquakes (MCE) was researched. The results show that the structures possess necessary safety against seismic collapse when they respectively encounter the maximum considered earthquakes corresponding to their seismic precautionary levels, and their collapse probabilities increase with increasing seismic precautionary intensities. Moreover, the EBSFs with V-shape braces have smaller collapse probability, thus greater capacity against seismic collapse than those with K-shape braces.

Seismic evaluation of isolated skewed bridges using fragility function methodology

  • Bayat, M.;Daneshjoo, F.;Nistico, N.;Pejovic, J.
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • A methodology, based on fragility functions, is proposed to evaluate the seismic performance of seismic isolated $45^{\circ}$ skewed concrete bridge: 1) twelve types of seismic isolation devices are considered based on two different design parameters 2) fragility functions of a three-span bridge with and without seismic isolation devices are analytically evaluated based on 3D nonlinear incremental dynamic analyses which seismic input consists of 20 selected ground motions. The optimum combinations of isolation device design parameters are identified comparing, for different limit states, the performance of 1) the Seismic Isolated Bridges (SIB) and 2) Not Seismic Isolated Bridge (NSIB) designed according to the AASHTO standards.

Seismic Isolation Design for Bridges on Lead-Rubber Bearings (납-면진받침을 이용한 교량의 면진설계)

  • 이철희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.161-168
    • /
    • 1999
  • The concept of seismic design was induced in our country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently many specialists are enforcing the provisions of seismic design. But because seismic force of seismic design is very great and all the seismic force are concentrated on the fixed bearings and substructure the bearings are the seismic force are concentrated on the fixed bearings and substructure the bearings are destroyed so that seismic design lose its basic concept. In addition when the earthquake which exceeds seismic design force takes place the bridge is collapsed. For these reasons the developed seismic isolation design concept was appeared which diminishes seismic force itself by period shift and additional damping distributes it to each superstructures evenly. Therefore this study introduced the method which combines PC-LEADeR(design program for L.R.B) with SAP 2000(linear elastic analysis) and performs the seismic isolation design more elaborately and simply verified the propriety of that method and examined the force control of L. R. B.

  • PDF

Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements (경주 9.12지진의 피해 및 비구조요소 내진설계기준)

  • Lee, Su Hyeon;Cho, Tae Gu;Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

Structural redundancy of 3D RC frames under seismic excitations

  • Massumi, Ali;Mohammadi, Ramin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.15-36
    • /
    • 2016
  • The components of the seismic behavior factor of RC frames are expected to change as structural redundancy increases. Most researches indicate that increasing redundancy is desirable in response to stochastic events such as earthquake loading. The present paper investigated the effect of redundancy on a fixed plan for seismic behavior factor components and the nonlinear behavior of RC frames. The 3D RC moment resistant frames with equal lateral resistance were designed to examine the role of redundancy in earthquake-resistant design and to distinguish it from total overstrength capacity. The seismic behavior factor and dynamic behavior of structures under natural strong ground motions were numerically evaluated as the judging criteria for structural seismic behavior. The results indicate that increasing redundancy alone in a fixed plan cannot be defined as a criterion for improving the structural seismic behavior.

Progress in Seismic Design Concept in Moderate Seismicity regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Easterm America China Australia Thailand and Hong Kong will be introduced, . The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

  • PDF

Improvement of Seismic Safety of Nuclear Power Plants by Equipment Isolations (기기의 면진을 통한 원전의 내진안전성 향상)

  • 전영선;최인길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.93-100
    • /
    • 2003
  • Seismic isolation systems can improve the seismic safety of nuclear power plants by decreasing seismic force transmitted to structures and equipment. This study evaluates the effectiveness of equipment seismic isolation systems by the comparison of core damage frequencies in non-isolated and isolated cases. It can be found that the seismic isolation systems increase seismic capacity of nuclear equipment and decrease core damage frequencies significantly. The effect of equipment isolation is more significant in the PGA range of 0.3g to 0.5g.

  • PDF

STRUCTURAL RETROFIT AND COMPUTATIONAL ENGINEERING FOR SEISMIC ENGINEERING IN JAPAN

  • Okada, Tsuneo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.15-22
    • /
    • 1998
  • It is needless to say that the computer and/or computational engineering has contributed much to the development of the earthquake engineering such as seismic design of structures in providing good tools to researchers and engineers. However, it has been also pointed out that the proper selection of numerical analysis and/or computer program is very important for engineers in utilizing it in the design of structures, because a numerical analysis method is based upon its own coverage. A rigorous analysis does not always gives a correct solution in a sence of engineering or of structural safety, but, some times, it gives mathematically rigorous but unrealistic solution. Therefore, numerical analysis should be performed with engineering judgement or experiments specially in the field of earthquake engineering because this field has large uncertainties on predicting the effect of earthquake on structures. This paper is based on the presented paper at the Bertero Symposium held in January 31an4 February 1 at Berkeley, California, USA which was entitled "Needs to Evaluate Real Seismic Performance of Buildings-Lessons from 1995 Hyogoken-Nambu Earthquake-". The lessons for buildings from the damage due to the Hyogoken-Nambu Earthquake are necessity to develop more rational seismic design codes based upon a performance-based design concept, and to evaluate seismic performance of existing buildings. In my keynote lecture at the Korean Association for Computational Structural Engineering, the history of seismic design and use of structural analysis in Japan, the lessons for buildings from the Hyogoken-Nambu Earthquake, the building damage due to the earthquake, the reasons why the seismic retrofit has not been implemented much, the responses to the lessons from the earthquake, the Network Committee for promotion of seismic retrofit of buildings, the Law for promotion of seismic retrofit of buildings and the implementation of seismic retrofit in Japan are presented.

  • PDF