• Title/Summary/Keyword: seismic energy

Search Result 1,502, Processing Time 0.028 seconds

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

CURRENT STATUS AND IMPORTANT ISSUES ON SEISMIC HAZARD EVALUATION METHODOLOGY IN JAPAN

  • Ebisawa, Katsumi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1223-1234
    • /
    • 2009
  • The outlines of seismic PSA implementation standards and seismic hazard evaluation procedure were shown. An overview of the cause investigation of seismic motion amplification on the Niigata-ken Chuetsu-oki (NCO) earthquake was also shown. Then, the contents for improving the seismic hazard evaluation methodology based on the lessons learned from the NCO earthquake were described. (1) It is very important to recognize the effectiveness of a fault model on the detail seismic hazard evaluation for the near seismic source through the cause investigation of the NCO earthquake. (2) In order to perform and proceed with a seismic hazard evaluation, the Japan Nuclear Energy Safety Organization has proposed the framework of the open deliberation rule regarding the treatment of uncertainty which was made so as to be able to utilize a logic tree. (3) The b-value evaluation on the "Stress concentrating zone," which is a high seismic activity around the NCO hypocenter area, should be modified based on the Gutenberg-Richter equation.

Seismic energy dissipation in torsionally responding building systems

  • Correnza, J.C.;Hutchinson, G.L.;Chandler, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.255-272
    • /
    • 1995
  • The paper considers aspects of the energy dissipation response of selected realistic forms of torsionally balanced and torsionally unbalanced building systems, responding to an ensemble of strong-motion earthquake records. Focus is placed on the proportion of the input seismic energy which is dissipated hysteretically, and the distribution of this energy amongst the various lateral load-resisting structural elements. Systems considered comprise those in which torsional effects are discounted in the design, and systems designed for torsion by typical code-defined procedures as incorporated in the New Zealand seismic standard. It is concluded that torsional response has a fundamentally significant influence on the energy dissipation demand of the critical edge elements, and that therefore the allocation of appropriate levels of yielding strength to these elements is a paramount design consideration. Finally, it is suggested that energy-based response parameters be developed in order to assist evaluations of the effectiveness of code torsional provisions in controlling damage to key structural elements in severe earthquakes.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Seismic capacity re-evaluation of the 480V motor control center of South Korea NPPs using earthquake experience and experiment data

  • Choi, Eujeong;Kim, Min Kyu;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1363-1373
    • /
    • 2022
  • The recent seismic events that occurred in South Korea have increased the interest in the re-evaluation of the seismic capacity of nuclear power plant (NPP) equipment, which is often conservatively estimated. To date, various approaches-including the Bayesian method proposed by the United States (US) Electric Power Research Institute -have been developed to quantify the seismic capacity of NPP equipment. Among these, the Bayesian approach has advantages in accounting for both prior knowledge and new information to update the probabilistic distribution of seismic capacity. However, data availability and region-specific issues exist in applying this Bayesian approach to Korean NPP equipment. Therefore, this paper proposes to construct an earthquake experience database by combining available earthquake records at Korean NPP sites and the general location of equipment within NPPs. Also, for the better representation of the seismic demand of Korean earthquake datasets, which have distinct seismic characteristics from those of the US at a high-frequency range, a broadband frequency range optimization is suggested. The proposed data construction and seismic demand optimization method for seismic capacity re-evaluation are demonstrated and tested on a 480 V motor control center of a South Korea NPP.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

Reduction of the Seismetic rRspocses by Using the Modified Hysteretic Bi-Linear Model of the Seismic Isolator (수정히스테리틱 Bi-Linear 면진베어린 모델을 사용한 지진응답감소)

  • Koo, G.H.;Lee, J.H.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.127-134
    • /
    • 1996
  • In general, seismic isolators which are made of laminated rubber and shim plate have characteristics of complex hysteretic behavior. When shear deformation of the seismic isolator is small, the isolator hassimple hysteretic almost bi-linear behabior. But on large shear deformation hardening effects may occur. This paper proposes a moldeling method of the seimic isolator with modified hysteretic bi-linear model which can consider the hardening effects. From the results of the seismic analyses of the isolated system it is shown that the responses are singificantly reduced compared with those of the non-isolated system. The modified hysteretic bi-linear model of the isolator gives larger ZPA(zero period acceleration) than those of the simple hysteretic bi-linear model and the equivalunt spring-damper model.

Seismic Drop Performance for Second Shutdown Drive Mechanism Installed in Research Reactor (연구용 원자로 내부에 설치되는 이차정지구동장치의 내진낙하성능)

  • Kim, Sanghaun;Kim, Gyeong-Ho;Sun, Jongoh;Cho, Yeong-Garp;Kim, Jung-Hyun;Jung, Taeck-Hyung;Lee, Kwan-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.697-704
    • /
    • 2016
  • The second shutdown drive mechanism (SSDM) that is classified into seismic category I as an active mechanical equipment shall maintain the structural integrity and its designed inherent safety functions during and/or after normal operation, anticipated operational occurrences, accidents and seismic occurrences. Therefore, not only a structural integrity assessment through numerical analyses but also a qualification test by using the prototype SSDM shall be conducted to verify the adequacy of the SSDM design. This paper describes a sort of seismic qualification test of the prototype SSDM to demonstrate that the structural integrity and operability (functionality) of SSDM are maintained during and/or after seismic excitations. From the results, this paper shows that the SSDM satisfies all design requirements without any malfunctions during and after the seismic test.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.