• Title/Summary/Keyword: seismic design method

Search Result 1,029, Processing Time 0.027 seconds

The Evaluation of Seismic Performance on the Concrete Dam of Analysis Method (해석방법에 따른 콘크리트댐의 내진성능평가)

  • 임정열;이종욱;오병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • The seismic design of the domestic concrete dams has done by seismic coefficient method considering inertia force, but this method has defect not reflect dynamic properties, as a conservative design method. Therefore, it is necessary for seismic design of dam to consider dynamic properties. Also, concrete dam evaluation of seismic performance has done by seismic coefficient method - in fact, it may done by dynamic analysis - that has many problems when applied to the domestic criteria. This study make a comparative analysis for result from seismic design and evaluation of seismic performance by seismic coefficient method, modified seismic coefficient method, and dynamic analysis method.

Seismic Isolation Design for Bridges on Lead-Rubber Bearings (납-면진받침을 이용한 교량의 면진설계)

  • 이철희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.161-168
    • /
    • 1999
  • The concept of seismic design was induced in our country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently many specialists are enforcing the provisions of seismic design. But because seismic force of seismic design is very great and all the seismic force are concentrated on the fixed bearings and substructure the bearings are the seismic force are concentrated on the fixed bearings and substructure the bearings are destroyed so that seismic design lose its basic concept. In addition when the earthquake which exceeds seismic design force takes place the bridge is collapsed. For these reasons the developed seismic isolation design concept was appeared which diminishes seismic force itself by period shift and additional damping distributes it to each superstructures evenly. Therefore this study introduced the method which combines PC-LEADeR(design program for L.R.B) with SAP 2000(linear elastic analysis) and performs the seismic isolation design more elaborately and simply verified the propriety of that method and examined the force control of L. R. B.

  • PDF

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge (교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구)

  • Park, Yeon-Soo;Lee, Byung-Geun;Kim, Eung-Rok;Suh, Byung-Chul;Park, Sun-Joon;Choi, Sun-Min
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Evaluation of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Buried Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 김동수;김동수;유제남
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.129-139
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of buried structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by direct integrating the ground-surface acceleration response spectrum of soil type $S_{A}$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.n.

  • PDF

Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.69-83
    • /
    • 1999
  • Soil-reinforced segmental retaining walls(SRW) have been proven to be high earthquake-resistant structure during recent earthquakes in United States and Japan. The mechanicals behavior of the SRWs under seismic loading, however, has not been fully understood. Although the seismic design issues for the civil engineering structures have gained much attention in Korea due to the increase in frequency of earthquake occurrence, the seismic design for the SRWs has not been being implemented. This study has been undertaken with the aim of developing a more rational seismic design/analysis method for soil-reinforced segmental retaining walls. This paper present fundamentals of current seismic design/analysis method and the results of a comparative study between NCMA and FHWA design guidelines, Practical implications of the findings from this study are discussed in great detail.

  • PDF

Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 윤종구;김동수;유제남
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.211-221
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of underground structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by directly integrating the ground-surface acceleration response spectrum of soil type S$_A$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.

Development of Optimal Performance based Seismic Design Method using Displacement Coefficient Method (변위계수법을 활용한 최적 내진 성능기반 설계기법 개발)

  • 이현국;권윤한;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.103-110
    • /
    • 2004
  • Recently, performance based seismic design (PBSD) methods in numerous forms have been suggested and widely studied as a new concept of seismic design. The PBDSs are far from being practical due to complexity of algorithms resided in the design philosophy In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this paper, strength design criteria, stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 9-story two-dimensional steel frame structures.

  • PDF

Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames (2차원 철골 구조물의 최적 성능기반 내진설계법 개발)

  • Kwon Bong-Keun;Lee Hyun-Kook;Kwon Yun-Man;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Study on Seismic Resistant Safety of Seismic Isolation Design for Bridge using L.R.B. (L.R.B.를 이용한 면진설계의 내지진 안전성 연구)

  • Lee, Chol-Hee;Shin, Jae-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2002
  • Due to few earthquakes in our country, one generally has thought to be safe from earthquakes. However, severe earthquakes occurred in Dangsan and Hyogohyeon which one had regarded as the zone that had not been risky for earthquakes, so that so many people died and a lot of buildings and bridges were destroyed. This event surprised our country and we undertook preparation for earthquakes on the full scale. The concept of seismic design was induced in the country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently, many specialists are enforcing the provisions of seismic design. Therefore, this study introduces the method which combines PC-LEADeR( design program for L.R.B.) with LUSAS(linear elastic analysis) and performs the seismic isolation design more elaborately and simply. It verifies the propriety of that method, and it also examine the factors that affect the response of the bridges. Seismic isolation design for bridge using L.R.B. provides both economical efficiency and superior seismic performance. Second, the results between by the method proposed and by time history analysis have 20% error at the maximum. That is, the method proposed very appropriate.