• 제목/요약/키워드: seismic design criteria

Search Result 231, Processing Time 0.024 seconds

Optimum Life-Cycle Cost-Effective Seismic Design for Continuous PSC Bridges Considering Lifetime Expected Seismic Risks (구조 수명간 지진위험도를 고려한 연속 PSC교의 LCC 최적 내진설계)

  • Cho Hyo Nam;Lee Kwang Min;Park Kyung Hoon;Kim Pyung Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.720-723
    • /
    • 2004
  • This study is intended to propose a systematic approach for determining optimum Life-Cycle Cost (LCC)-effective seismic design for continuous PSC bridges considering lifetime expected seismic risks. In the paper, a set of cost function for LCC analysis of bridges is proposed. The total LCC functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect socio-economic losses. The damage costs are expressed in terms of Park-Ang median global damage indices (Park and Ang, 1985) and lifetime damage probabilities. The proposed approach is applied to model bridges of both moderate seismicity regions like Korea and high seismicity regions like Japan. Since, in case of bridges, a number of parameters may have an influence on optimal target reliability, various sensitivity analyses are performed in this study. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as continuous PC bridges.

  • PDF

A Study on the Seismically-induced Lateral Displacements of Caisson Quay Walls Considering Seismic Magnitude in Korea (국내 지진규모를 고려한 케이슨 안벽의 지진시 수평변위 특성에 관한 연구)

  • 박근보;차승훈;최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.83-90
    • /
    • 2002
  • There are few earthquake records in Korea and the Japanese or American representative earthquake records have been generally used in the seismic design. In this study, some earthquake records which the range of earthquake magnitudes varies from 5.3 to 7.9 were collected and analyzed to assess which record can rationally reflect Korean seismic characteristics. In this assessment, each seismic energy and acceleration spectrum were analyzed with the unified maximum ground acceleration. Several numerical analyses on Korean representative caisson structures were also carried out to compare each dynamic displacement. In these numerical analyses, soil conditions and the dimension of structure such as height and width were changed. Through this assessment, it is found that the compatible earthquake magnitude in Korea is lower than 7. From the result of numerical analyses, it is shown that horizontal dynamic displacements corresponding to earthquake magnitudes over than 7 are quite larger than those below earthquake magnitude 7. Based on this study, it is necessary that Korean seismic design guideline will refer earthquake magnitude criteria for the construction of the economical aseismic structure.

  • PDF

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

Analytical Study on Seismic Behavior of Precast Concrete Slabs with Different Aspect Ratios (형상비에 따른 프리캐스트 콘크리트 슬래브의 지진 거동에 대한 해석적 연구)

  • Lim, Gyu Seok;Jang, Won Seok;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • Due to the recent increase in domestic seismic activity and the proliferation of PC structure buildings, there is a pressing need for a fundamental study to develop and revise the design criteria for Half-PC slabs. In this study, we propose criteria for determining the rigid diaphragm based on the aspect ratio of Half-PC slabs and investigate the structural effects based on the presence of chord element installation. This study concluded that Half-PC slabs with an aspect ratio of 3.0 or lower can be designed as rigid diaphragms. When chord elements are installed, it is possible to design Half-PC slabs with an aspect ratio of 4.0 or lower as rigid diaphragms. In addition, the increase in the aspect ratio of the Half-PC slab leads to a decrease in the in-plane stiffness of the structure, confirming that the reduction effect of the maximum displacement in force direction (𝜟max ) due to the increase in wall stiffness is predominantly influenced by flexibility.

Seismic Performance Evaluation of School Building Reinforced by Circular-Opening Steel Shear Wall System (원형개구부가 있는 강판 전단벽 시스템을 적용한 학교 건축물의 내진성능평가)

  • Lee, Yu-Hyeon;Lee, Swoo-Heon;Lee, Hee-Du;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • After the Gyeongju earthquake, school buildings were designated as earthquake shelters. However, the ratio of designed for seismic of domestic school buildings is only 23.2% in Korea, and it is necessary to secure the seismic safety of those. Therefore, in this paper, a target building was selected before the seismic design criteria was established and the seismic performance of the building was evaluated. After the evaluation, reinforcement of the building was carried out using seismic retrofit systems which was previously tested. For this purpose, the evaluation was carried out using OpenSees program and the reliability of the seismic retrofit systems was also verified. In this way, we can more precisely reproduce the response of the building in case of actual earthquake and predict damage of the earthquake in the future.

Determination of Site Classification Method in the Korean Peninsula Based On NYCDOT2008(2008 New York City DOT Seismic Design Guidelines) (NYCDOT2008 기준을 이용한 국내 지반의 지반분류방법 결정)

  • Kang, Ho-Deok;Kim, Ki-Sang;Sun, Chang-Kuk;Kim, Myung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.777-784
    • /
    • 2010
  • In the current Korean seismic design guide, the site classification and the corresponding site coefficients were determined based on the UBC-1997 (Uniform Building Code). In order to develop the current site classification system, it is important to compare the local site conditions in Korea to other countries which have similar seismic design guides. In the eastern United States, New York City(40degrees 45minutes north latitude, 73degrees 59minutes west longitude) suggested that current design guidelines are unsuitable to shallow bedrock depth sites. So the 3-parameter methods are performed for new criteria in New York City. In this study, site response analyses were performed at 181 study sites using one-dimensional equivalent linear to evaluate the site-specific earthquake ground motions at inland areas in the Korean peninsula and reclassify the results according to similar ground motions using the 3-parameter methods. It is effective that multi-parameter methods for Korean site characteristics in comparison with single parameter method.

  • PDF

Reliability analysis of braced frames subjected to near field ground motions

  • Sistani, Asma;Asgarian, Behrouz;Jalaeefar, Ali
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.733-751
    • /
    • 2013
  • Near field ground motions have caused several structural damages in recent decades. As a result, seismic codes are being updated with related requirements. In this paper a comparative study on the seismic behavior of concentrically braced frames (CBFs) designed based on different seismic codes is performed. Reliability of various frames with different heights and bracing types are analyzed based on the results of "Incremental Dynamic Analysis" (IDA) under near field ground motions. Fragility curves corresponding to IO (Immediate Occupancy) and CP (Collapse Prevention) limit states are extracted based on IDA curves. Results imply that, frames designed based on the near field seismic design criteria of UBC-97 are more reliable under near field ground motions and their failure probability is less comparing to others.

Predictions of Seismic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 지진응답 예측)

  • 김태훈;김운학;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.133-140
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete bridge piers and to provide the data for developing improved seismic design criteria. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected. local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for the prediction of seismic behavior for reinforced concrete bridge piers is veri fief by comparison with the reliable experimental results.

  • PDF

Pseudo Dynamic Test of the Seismically Isolated RC Piers (지진격리설계된 RC교각의 유사동적 실험)

  • Kim Young-Jin;Kwahk Im-Jong;Cho Chang-Beck;Kwark Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. In this experimental study, the effectiveness of base isolation bearings was discussed for the seismic retrofit of the highway bridges. Four real scale RC pier specimens were constructed for the test. These RC piers didn't have seismic details. Except for one RC pier for the pilot test, three types of bearings such as Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to the other RC piers respectively. The RC pier with Pot bearing means current state of the prototype bridge that is not retrofitted seismically. And two RC piers with RB or LRB mean assumed states of the prototype bridge that are retrofitted seismically. To simulate dynamic behavior of these RC piers under earthquake loads, Pseudo-dynamic test method was used.

  • PDF

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.