• Title/Summary/Keyword: seismic design code

Search Result 482, Processing Time 0.027 seconds

A Comparison of Time History Analysis to UBC-88 Requirements in a Low Seismic Zone (약진지역에 있어서의 시간이력 해석과 UBC 규준 해석의 비교)

  • 김희철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.90-95
    • /
    • 1991
  • The Uniform Building Code (UBC) is the most widely used requirements for earthquake resistant design in the United States. In this paper, a mid-rise steel building is analyzed by applying 12 sets of actual strong-motion earthquake data that have been scaled to acne 2B levels. The simply extrapolated ground motion displacements are used for the dynamic loads. The results of dynamic analyses for a 10-story steel building are compared with the static and dynamic analysis requirements of UBC-88. It was found that computed lateral fortes using UBC-88 static procedure differed by about 60 percent depending on whether the natural period was computed using the UBC empirical method or the UBC recommended Rayleigh's method. The lateral fortes computed from the UBC response spectra were more than 10 times greater than those computed by UBC static procedures. The lateral forces obtained from both linear and nonlinear analyses using 1989 Loma Prieta ground mot ions compared very well with UBC response spectra results.

  • PDF

Ductility performance of hollow-section reinforced concrete piers using high-strength reinforcing bars (중공단면 고강도 철근 콘크리트 교각의 연성거동에 관한 실험적 연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • Three Hollow RC piers were tested under a constant axial load and a cyclically reversed horizontal loadto investigate the structural behavior of hollow RC piers using the high strength concrete and the high strength rebars. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

  • PDF

Problems in Seismic Design of High-Rise RC Building Frame Systems (초고층 건물골조 시스템의 내진설계상 문제점)

  • Lee, Han-Seon;Jung, Sung-Wook;Ko, Dong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.195-202
    • /
    • 2005
  • High-rise residential buildings in these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes, with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio and, deformation compatibility requirements of frames. The comparative study for these issues by appling IBC 2000 and KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on designer's interpretation and application of code requirements.

  • PDF

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Earthquake performance of FRP retrofitting of short columns around band-type windows

  • Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • Due to design codes and regulations and the variety of building plans in Turkey, it is very often seen that band-type windows are left for ventilation and lightening of the basements of buildings which are used for various purposes such as workplaces and storage. Therefore when the necessary support measures cannot be given, short columns are subjected to very high shear forces and so damage occurs. One of the precautions to avoid the damage of short column mechanisms in buildings where band-type windows are in the basement is to strengthen the short columns with fiber reinforced polymer (FRP). In this study, the effect of the FRP retrofitting process of the short columns around band-windowed structures, which are found especially in basement areas, is analyzed in accordance with Turkish Seismic Code 2007 (TSC 2007). Three different models which are bare frame, frame with short columns and retrofitted short columns with FRP, are created and analyzed according to TSC 2007 performance analysis methods to understand the effects of band windows in basements and the effect of FRP retrofitting.

Prediction of engineering demand parameters for RC wall structures

  • Pavel, Florin;Pricopie, Andrei
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.741-754
    • /
    • 2015
  • This study evaluates prediction models for three EDPs (engineering demand parameters) using data from three symmetrical structures with RC walls designed according to the currently enforced Romanian seismic design code P100-1/2013. The three analyzed EDPs are: the maximum interstorey drift, the maximum top displacement and the maximum shear force at the base of the RC walls. The strong ground motions used in this study consist of three pairs of recordings from the Vrancea intermediate-depth earthquakes of 1977, 1986 and 1990, as well as two other pairs of recordings from significant earthquakes in Turkey and Greece (Erzincan and Aigion). The five pairs of recordings are rotated in a clockwise direction and the values of the EDPs are recorded. Finally, the relation between various IMs (intensity measures) of the strong ground motion records and the EDPs is studied and two prediction models for EDPs are also evaluated using the analysis of residuals.

Some Critical Problems in Seismic Design of High-Rise RC Building frame Systems (고층 RC 건물골조시스템의 내진설계상 몇 가지 주요 문제점)

  • Lee Han-Seon;Jeong Seong-Wook;Ko Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.727-734
    • /
    • 2005
  • High-rise residential buildings these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio, and deformation compatibility requirements of frames. The comparative study for these issues by appling KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on engineer's Interpretation and application of code requirements. And a building frame system can be noneconomical, compared with the dual system, because of higher demands on strength or ductility in both frames and shear walls.

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Seismic Performance Evaluation of Special Moment Steel Frames with Torsional Irregularities - I Seismic Design (비틀림 비정형을 갖는 철골특수모멘트골조의 내진성능평가 - I 내진설계)

  • Han, Sang Whan;Kim, Tae O;Ha, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.361-368
    • /
    • 2017
  • ASCE 7-10 defines the torsional irregular structure as the one that has large torsional responses caused by the eccentricity. The code requires that these structures should be designed abide by the torsional provisions. This study evaluates the influence of torsional provisions on the performance of the designed multiple steel moment frames with different eccentricity. In this study, 3D response history analyses are performed. The results show that the moment frame design according to the standard with torsional irregularity provisions showed larger performance as the eccentricity increased and the distribution of plastic hinges similarly to orthopedic structures.

Evaluation of Structural Performance of Flat Plate-Column Interior Connections with Folded Bend Shear Reinforcement (밴드형 전단보강근으로 보강된 무량판 슬래브 내부접합부의 구조 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young;Bang, Jong-Dae;Jun, Myoung-Hoon;Cho, Gun-Hee
    • Land and Housing Review
    • /
    • v.4 no.4
    • /
    • pp.371-382
    • /
    • 2013
  • This study performs an experimental investigation to evaluate the behavior of RC flat plate interior joints specimens. Three 60 percent scale Flat Plate interior specimens assemblies representing a portion of a Flat Plate Apartment Structural System subjected to simulated seismic loading (unbalanced moments) under constant axial load were tested, including one specimens with ordinary shear reinforcement and two specimens with folded bend type shear reinforcement. Test results are shown that (1) the design code KBC 2009 is accurate estimate the behavior of specimens. (2) Two types shear reinforcement have a similar structural behavior, but construction work of rebar with folded bend type shear reinforcement is easier than that of ordinary shear reinforcement. (3) In moderate seismic region, RC Flat Plate interior joint with folded bend type shear reinforcement is apply to structural design of Flat Plate.