• Title/Summary/Keyword: seismic damper

Search Result 543, Processing Time 0.027 seconds

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers (마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성)

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF

Seismic response Analysis of Building Structures considering the Nonlinear Property of Viscoelastic Dampers (점탄성 댐퍼의 비선형 특성을 고려한 건물의 지진응답해석)

  • Choi, Hyun;Kim, Doo-Hun;Min, Kyung-Won;Lee, Sang-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.228-235
    • /
    • 1999
  • As a seismic damper the viscoelastic damper is known the effective method to control the drift of the flexible building. As the viscoelastic damper has the characteristics of both damping and stiffness specially when the rubber material used hysteretic damping. The behavior of the hysteretic damping is quite different from that of the viscous damping. For the evaluation of the viscoelastic damper for the seismic purpose the nonlinear response spectrum was generated based on the dynamic test of the viscoelastic damper and the results is compared to that of the typical linear response spectrum,

  • PDF

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Seismic Load (아웃리거 댐퍼시스템의 고층건물 지진응답제어 성능 평가)

  • Yoon, Sung-Wook;Lee, Lyeong-Kyeong;Kim, Kwang-Il;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.