• Title/Summary/Keyword: seismic damper

Search Result 541, Processing Time 0.03 seconds

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour;Reza Raoufi;Ehsan Kazeminezhad
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.187-198
    • /
    • 2023
  • Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

In-hole seismic method for measuring dynamic properties of soils (지반물성치 측정을 위한 인흘탄성파시험)

  • Mok Young Jin;Kim Young Su;You Chang Yeon;Han Man Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.117-123
    • /
    • 2005
  • An in-hole seismic tests, which has been developed for measuring dynamic properties of soils and rock mass, is a bore hole seismic method that has cost effectiveness and practicality. The upgraded features include the motorized triggering system rather than the manual prototype version in the previous studies and a damper between source and receiver in the module. The performance of the probe has been verified through extensive cross-hole tests and in-hole tests at various sites. The dynamic stiffness of subsurface materials and rock mass have been evaluated and recently, the measurement of shear wave velocity was successfully adopted at horizontal holes of tunnel-face to install explosives. So the application of in-hole seismic test for various soil materials was certified.

  • PDF

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model (RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.774-779
    • /
    • 2020
  • The seismic response reduction capacity of a smart mid-story isolation system was investigated using the RNN model in this study. For this purpose, an RNN model was developed to make a dynamic response prediction of building structures subjected to seismic loads. An existing tall building with a mid-story isolation system was selected as an example structure for realistic research. A smart mid-story isolation system was comprised of an MR damper instead of existing lead dampers. The RNN model predicted the seismic responses accurately compared to those of the FEM model. The simulation time of the RNN model can be reduced significantly compared to the FEM model. After the numerical simulations, the smart mid-story isolation system could effectively reduce the seismic responses of the existing building compared to the conventional mid-story isolation system.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

High-rise Reinforced-concrete Building Incorporating an Oil Damper in an Outrigger Frame and Its Vibration Analysis

  • Omika, Yukihiro;Koshika, Norihide;Yamamoto, Yukimasa;Kawano, Kenichi;Shimizu, Kan
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • The reinforced-concrete multi-story shear-wall structure, which can free a building from beams and columns to allow the planning of a vast room, has increasingly been used in Japan as a high-rise reinforced-concrete structure. Since this structural system concentrates the seismic force onto multi-story shear walls inside, the bending deformation of the walls may cause excessive deformation on the upper floors during an earthquake. However, it is possible to control the bending deformation to within a certain level by setting high-strength and rigid beams (outriggers) at the top of the multi-story shear walls; these outriggers restrain the bending behavior of the walls. Moreover, it is possible to achieve high energy dissipation by placing vibration control devices on the outriggers and thus restrain the bending behavior. This paper outlines the earthquake response analysis of a high-rise residential tower to demonstrate the effectiveness of the outrigger frame incorporating vibration control devices.

Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method (실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF

Intelligent hybrid controlled structures with soil-structure interaction

  • Zhang, X.Z.;Cheng, F.Y.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.573-591
    • /
    • 2004
  • A hybrid control system is presented for seismic-resistant building structures with and without soil-structure interaction (SSI). The hybrid control is a damper-actuator-bracing control system composed of passive and active controllers. An intelligent algorithm is developed for the hybrid system, in which the passive damper is designed for minor and moderate earthquakes and the active control is designed to activate when the structural response is greater than a given threshold quantity. Thus, the external energy for active controller can be optimally utilized. In the control of a multistory building, the controller placement is determined by evaluating the optimal location index (OLI) calculated from six earthquake sources. In the study, the soil-structure interaction is considered both in frequency domain and time domain analyses. It is found that the interaction can significantly affect the control effectiveness. In the hybrid control algorithm with intelligent strategy, the working stages of passive and active controllers can be different for a building with and without considering SSI. Thus SSI is essential to be included in predicting the response history of a controlled structure.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.