• 제목/요약/키워드: seismic damper

검색결과 540건 처리시간 0.019초

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

Steel hysteretic column dampers for seismic retrofit of soft-first-story structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.259-272
    • /
    • 2020
  • In this study a new hysteretic damper for seismic retrofit of soft-first story structures is proposed and its seismic retrofit effect is evaluated. The damper consists of one steel column member and two flexural fuses at both ends made of steel plates with reduced section, which can be placed right beside existing columns in order to minimize interference with passengers and automobiles in the installed bays. The relative displacement between the stories forms flexural plastic hinges at the fuses and dissipate seismic energy. The theoretical formulation and the design procedure based on plastic analysis is provided for the proposed damper, and the results are compared with a detailed finite-element (FE) model. In order to apply the damper in structural analysis, a macromodel of the damper is also developed and calibrated by the derived theoretical formulas. The results are compared with the detailed FE analysis, and the efficiency of the damper is further validated by the seismic retrofit of a case study structure and assessing its seismic performance before and after the retrofit. The results show that the proposed hysteretic damper can be used effectively in reducing damage to soft-first story structures.

An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures

  • Mohammad Mahdi Javidan;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.721-734
    • /
    • 2024
  • In this research, the efficiency of a metallic energy dissipation device for seismic retrofit of an existing structure is evaluated by cyclic loading test. The proposed device, which is called multi-slit damper, is made of weak and strong slit dampers connected in series. Its energy dissipation mechanism consists of two stages: (i) yielding of the weak-slit damper under minor earthquakes; (ii) restraint of further deformations of the weak slit damper and activation of the strong slit damper under major earthquakes using a gap mechanism. A reinforced concrete (RC) frame with characteristics similar to soft-first-story structures is tested under cyclic loading before and after retrofit using the proposed device. The details of the experimental study are described and the test is simulated in an available commercial software to validate the analytical model of the damper. To further verify the applicability of the damper, it is applied to an analysis model of a 4-story structure with soft first story and its seismic performance is evaluated before and after retrofit. The experimental and analysis results show that the multi-slit damper is effective in controlling seismic response of structures.

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

강재댐퍼를 적용한 역사 건물의 내진 응답 (Seismic Resistance Response of Railway Station Building Retrofitted by Metallic Dampers)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.82-88
    • /
    • 2010
  • 본 연구의 목적은 내진규준이 적용되기 이전에 건설된 역사건물의 내진성능 평가 및 내진보강이다. 이를 위하여 2층 RC 역사건물의 내진성능이 평가되었다. 동적해석에 의한 층간변위비 및 층전단력 평가결과, 층전단력이 설계기준의 밑면전단력을 초과하는 것으로 평가되어 적절한 내진보강이 필요한 것으로 평가되었다. 내진성능 향상을 위하여 총 4개의 강재댐퍼가 사용되었다. 해석 변수는 강재댐퍼 형상 및 설치 방법이다. 동적해석결과 역 K가새로 설치되는 슬릿댐퍼가 다른 댐퍼 형상 및 설치 방법보다 우수한 내진성능을 가진 것으로 평가되었다.

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan;Asad Naeem;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.257-270
    • /
    • 2023
  • In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구 (A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber)

  • 곽신영;곽진성;이환호;오진호;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.