• 제목/요약/키워드: seismic collapse risk

검색결과 51건 처리시간 0.018초

위험도기반 최대예상지진에 근거한 국내 내진설계 지도 (Domestic Seismic Design Maps Based on Risk-Targeted Maximum- Considered Earthquakes)

  • 신동현;김형준
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.93-102
    • /
    • 2015
  • This study evaluates collapse probabilities of structures which are designed according to a domestic seismic design code, KBC2009. In evaluating their collapse probabilities, to do this, probabilistic distribution models for seismic hazard and structural capacity are required. In this paper, eight major cities in Korea are selected and the demand probabilistic distribution of each city is obtained from the uniform seismic hazard. The probabilistic distribution for the structural capacity is assumed to follow a underlying design philosophy implicitly defined in ASCE 7-10. With the assumptions, the structural collapse probability in 50 years is evaluated based on the concept of a risk integral. This paper then defines an mean value of the collapse probabilities in 50 years of the selected major cities as the target risk. Risk-targeted spectral accelerations are finally suggested by modifying a current mapped spectral acceleration to meet the target risk.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률 (Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard)

  • 김대환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능 (Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard)

  • 신동현;홍석재;김형준
    • 한국전산구조공학회논문집
    • /
    • 제30권5호
    • /
    • pp.371-380
    • /
    • 2017
  • 미국의 내진설계기준인 ASCE/SEI 7-10은 구조물 붕괴성능에 대한 불확실성을 고려하지 않는 등재해도 기반 내진설계의 문제점을 해결하기 위해 위험도 기반 내진설계 개념을 도입하였다. 하지만 현행 국내 내진설계기준의 경우 한반도 내에서 발생한 큰 규모의 지진기록과 구조물의 붕괴성능과 관련된 연구의 부족으로 위험도 기반 내진설계 개념을 반영하지 않고 있다. 본 연구에서는 철골 보통중심가새골조를 표본건물로 선정하여 위험도 기반 내진성능평가를 수행하였다. 건물이 위치한 지역, 높이, 지반조건을 변수로 바탕으로 표본건물에 대한 붕괴성능 평가를 수행하였으며, 국내 지진기록의 특성을 반영할 수 있는 경험적 스펙트럴 형상 예측 모델을 활용하여 지진재해도 곡선을 작성하였다. 이를 활용하여 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 위험도 적분 개념에 따라 평가하였다. 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 평가한 결과, 현행 건축구조기준에 따라 설계된 표본건물은 본 연구에서 고려한 해석 변수에 따라 붕괴확률에 상당한 차이를 보였다. 특히 국내 건축구조기준의 경우 철골 보통중심가새골조에 대한 높이제한이 없어 일부 고층표본건물에서 목표 위험도인 50년간 1%의 붕괴확률을 초과하는 것으로 평가되었다.

내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가 (Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames)

  • 김태오;한상환
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.

Average spectral acceleration: Ground motion duration evaluation

  • Osei, Jack Banahene;Adom-Asamoah, Mark
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.577-587
    • /
    • 2018
  • The quantitative assessment of the seismic collapse risk of a structure requires the usage of an optimal intensity measure (IM) which can adequately characterise the severity of the ground motion. Research suggests that the average spectral acceleration ($Sa_{avg}$) may be an efficient and sufficient alternate IM as compared to the more traditional first mode spectral acceleration, $Sa(T_1)$, particularly during seismic collapse risk estimation. This study primarily presents a comparative evaluation of the sufficiency of the average spectral acceleration with respect to ground motion duration, and secondarily assesses the impact of ground motion duration on collapse risk estimation. By assembling a suite of 100 historical ground motions, incremental dynamic analysis of 60 different inelastic single-degree-of-freedom (SDF) oscillators with varying periods and ductility capacities were analysed, and collapse risk estimates obtained. Linear regression models are used to comparatively quantify the sufficiency of $Sa_{avg}$ and $Sa(T_1)$ using four significant duration metrics. Results suggests that an improved sufficiency may exist for $Sa_{avg}$ when the period of the SDF system increases, particularly beyond 0.5, as compare to $Sa(T_1)$. In reference to the ground motion duration measures, results indicated that the sufficiency of $Sa_{avg}$ is more sensitive to significant duration definitions that consider almost the full wave train of an accelerogram ($SD_{a5-95}$ and $SD_{v5-95}$). In order to obtain a reduced variability of the collapse risk estimate, the 5-95% significant duration metric defined using the Arias integral ($SD_{a5-95}$) should be used for seismic collapse risk estimation in conjunction with $Sa_{avg}$.

비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가 (Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories)

  • 김민지;한상환;김태오
    • 한국지진공학회논문집
    • /
    • 제25권4호
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안 (Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames)

  • 김태오;한상환
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.