Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.
When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.
The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of dome structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.
Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.
지진하중이 가해지는 구조물의 동적응답을 줄이기 위해서 면진장치가 널리 사용되고 있다. 근래에 들어서는 면진층의 변위를 증가시키지 않으면서도 면진된 구조물의 동적응답을 효과적으로 줄일 수 있는 스마트 면진시스템에 대한 연구가 활발히 이루어지고 있다. 이에 본 연구에서는 지진하중을 받는 아치구조물의 동적응답을 저감시키기 위하여 스마트 면진시스템을 적용하였고 제어성능을 검토하였다. 스마트 면진시스템을 구성하기 위하여 4kN 용량의 MR 감쇠기와 저감쇠 탄성 고무베어링을 사용하였다. 제안된 스마트 면진시스템의 제어성능을 검토하기 위하여 최적설계된 LRB와 지진응답 제어성능을 비교하였다. 이를 위하여 KBC2009 설계응답스펙트럼에 맞추어 생성한 인공지진파를 지진하중으로 사용하였다. 스마트 면진시스템의 MR 감쇠기를 제어하기 위하여 퍼지제어기를 사용하였으며, 다목적 유전자알고리즘을 이용하여 최적화하였다. 수치해석결과 스마트 면진시스템을 사용하면 LRB를 사용한 경우와 비교하여 면진층 변위와 아치구조물의 지진응답을 크게 줄일 수 있음을 확인하였다.
Seismic base isolation has been accepted as one of the most popular design procedures to protect important structures against earthquakes. However, due to lack of information and experimental data the application of base isolation is quite limited to nuclear power plant (NPP) industry. Moreover, the effects of inelastic behavior of soil beneath base-isolated NPP have raised questions to the effectiveness of isolation device. This study applies the wavelet analysis to investigate the effects of soil-structure interaction (SSI) on the seismic response of a base-isolated NPP structure. To evaluate the SSI effects, the NPP structure is modelled as a lumped mass stick model and combined with a soil model using the concept of cone models. The lead rubber bearing (LRB) base isolator is used to adopt the base isolation system. The shear wave velocity of soil is varied to reflect the real rock site conditions of structure. The comparison between seismic performance of isolated structure and non-isolated structure has drawn. The results show that the wavelet analysis proves to be an efficient tool to evaluate the SSI effects on the seismic response of base-isolated structure and the seismic performance of base-isolated NPP is not sensitive to the effects in this case.
This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.
Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
Earthquakes and Structures
/
제17권4호
/
pp.425-434
/
2019
The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.
Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.
Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.