• Title/Summary/Keyword: seismic applicability

Search Result 238, Processing Time 0.025 seconds

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

The Seismic Response Evaluation of Shear Buildings by Various Approximate Nonlinear Methods (비선형 약산법들에 의한 전단형 건물의 지진응답평가)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.75-86
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. Analysis methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to shear buildings and various earthquakes. The conclusions of this study are summarized as follows: 1) Linear capacity spectrum method may fail to find a convergent answer or make a divergence. Even if a convergent answer is found, it has a large error in some cases and the error varies greatly depending on earthquakes. 2) Although nonlinear capacity spectrum method need much less calculation than capacity spectrum method and find an answer in any case, it may be difficult to obtain an accurate answer and generally large error occurs. 3) The nonlinear direct spectrum method is thought to have good applicability because it produce relatively correct answer than other methods directly from pushover curves and nonlinear response spectrums without additional and iterative calculations.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

AVO analysis using crossplot and amplitude polynomial methods for characterisation of hydrocarbon reservoirs (탄화수소 부존구조 평가를 위한 교차출력과 진폭다항식을 이용한 AVO 분석)

  • Kim, Ji-Soo;Kim, Won-Ki;Ha, Hee-Sang;Kim, Sung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.25-41
    • /
    • 2011
  • AVO analysis was conducted on hydrocarbon-bearing structures by applying the crossplot and offset-coordinate amplitude polynomial techniques. To evaluate the applicability of the AVO analysis, it was conducted on synthetic data that were generated with an anticline model, and field data from the hydrocarbon-bearing Colony Sand bed in Canada. Analysis of synthetic data from the anticline model demonstrates that the crossplot method yields zero-offset reflection amplitude and amplitude variation with negative values for the upper interface of the hydrocarbon-bearing layer. The crossplot values are clustered in the third quadrant. The results of AVO analysis based on the coefficients of the amplitude polynomial are similar to those from the crossplots. These well correlated results of AVO analysis on field and synthetic data suggest that both methods successfully investigate the characteristics of the reflections from the upper interface of a hydrocarbon-bearing layer. Analysis based on the incident-angle equation facilitates the application of various interpretation methods. However, it requires the conversion of seismic data to an incident angle gather. By contrast, analysis using coefficients of the amplitude polynomial is cost-effective because it allows examining amplitude variation with offset without involving the conversion process. However, it warrants further investigation into versatile application. The two different techniques can be complement each other effectively as AVO-analysis tools for the detection of hydrocarbon reservoirs.

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Case Study on the Application of Chain Saw Machine for the Underground Marble Quarrying (갱내 대리석 채석을 위한 체인쏘머신 적용 사례연구)

  • Ju, Jaeyeol;Lee, Kwangpyo;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.180-191
    • /
    • 2013
  • The purpose of this research was to find an optimal quarrying for marble by analyzing the applicability and the work efficiency of a chain saw machine newly introduced in the underground Baekwoon mine. From the test results of the physical properties of Baekwoon marble, which affects the efficiency of rock cutting, it was found to have similar physical characteristics as the ones which are now being produced in the other areas in Korea. And especially it shows isotropic property, which can be thought to be advantageous as a dimensional stone. To check the long-term quality of the marble as a stone material, several tests such as corrosion resistance test and abrasion test were carried out. It was found to be vulnerable to acid rain with decrease of weight and seismic wave velocity after applying artificial rain at pH 5.6 for 50 times. The percentage of wear from abrasion test was 22.67%. The working time and cutting speed of the chain saw machine were recorded and analyzed during the test-run at the quarry. The overall work cycle was assorted into 9 unit operations and the operating time per each unit was drawn. The operating times for the two cutting patterns, which could be possibly applicable to the work site, were compared. The results indicated that the pattern B, that the cutting sequence was set to minimize the movement of the machine, showed 6% less working hours than the pattern A, which first cuts the outer boundary. With cutting pattern analysis, the ore body in the Baekwoon mine was 3 dimensionally modeled and a quarrying plan considering the existing conditions of the marble was suggested.

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.