• Title/Summary/Keyword: segregation potential

Search Result 57, Processing Time 0.023 seconds

Numerical Model with Segregation Potential on Frost Heave and Reliability Assessment for Silty Soils (Segregation Potential 기반 동상 예측 모델 및 실트질 토양을 이용한 동상해석 신뢰성 평가)

  • Jangguen Lee;Zheng Gong;Hyunwoo Jin;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.41-46
    • /
    • 2023
  • Numerical analysis of frost heave is challenging due to the influence of soil and environmental factors. Thermo-hydromechanical coupled analysis relies heavily on excessive input variables and primarily focuses on validating clayey soils, so it is limited to frost susceptible silty soils. An empirical approach based on thermodynamics offers relatively simple frost heave analysis and the advantage of linking constitutive equations with frost heave to enable geomechanical interpretations. In this paper, we introduce an empirical numerical model using the Segregation Potential (SP) and evaluate reliability through comparative analysis with experimental results of frost susceptible silty soils. While the SP model enables frost heave analysis for the given silty soils, further investigation on various silty soils is necessary to gather data on key input variables.

Sub-Ciliary Segregation of Two Drosophila Transient Receptor Potential Channels Begins at the Initial Stage of Their Pre-Ciliary Trafficking

  • Kwon, Youngtae;Lee, Jeongmi;Chung, Yun Doo
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1002-1010
    • /
    • 2020
  • Cilia are important eukaryotic cellular compartments required for diverse biological functions. Recent studies have revealed that protein targeting into the proper ciliary subcompartments is essential for ciliary function. In Drosophila chordotonal cilium, where mechano-electric transduction occurs, two transient receptor potential (TRP) superfamily ion channels, TRPV and TRPN, are restricted to the proximal and distal subcompartments, respectively. To understand the mechanisms underlying the sub-ciliary segregation of the two TRPs, we analyzed their localization under various conditions. In developing chordotonal cilia, TRPN was directly targeted to the ciliary tip from the beginning of its appearance and was retained in the distal subcompartment throughout development, whereas the ciliary localization of TRPV was considerably delayed. Lack of intraflagella transport-related proteins affected TRPV from the initial stage of its pre-ciliary trafficking, whereas it affected TRPN from the ciliary entry stage. The ectopic expression of the two TRP channels in both ciliated and non-ciliated cells revealed their intrinsic properties related to their localization. Taken together, our results suggest that sub-ciliary segregation of the two TRP channels relies on their distinct intrinsic properties, and begins at the initial stage of their pre-ciliary trafficking.

Field Experiments for Reducing Frost Susceptibility Using Recycled Tire Powder (폐타이어 파우더 혼합이 동상억제에 미치는 영향에 관한 야외실험 연구)

  • Kim, Hak-Sam;Suzuki, Teruyuki;Fukuda, Masani;Seo, Sang-Youl;Yamashita, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.5-14
    • /
    • 2010
  • Three years of frost heave field experiments were conducted to evaluate a method for reducing heave using a recycled tire powder-soil mixture. By mixing Tomakomai soil with 20% recycled tire powder, frost heave amount was drastically decreased. The results of the field experiment confirm that recycled tire powder is an excellent material for use in controlling the total amount of heave. The restraining effect of a recycled tire powder-soil mixture is qualitatively analyzed based on amount of frost heave, frost heave ratio, thermal conductivity, permeability and segregation potential theory.

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

An experimental study for reducing frost susceptibility using granulated used-tire (폐타이어분말 혼합이 동상억제에 미치는 영향에 관한 실험적 연구)

  • Kim, Hak-Sam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • The authors conducted field experiments of frost heave to evaluate a method for reducing frost susceptibility using granulated used-tire mixture for 3 winters. Qualitative analyses for the evaluation of restraint effect of frost susceptibility by utilizing granulated used-tire soil mixture were conducted with the segregation potential concept and frost heave ratio. By mixing soil with granulated tire, the frost susceptibility was decreased drastically. From the result of the analyses, it was confirmed that granulated tire is an excellent material in controlling the frost susceptibility.

  • PDF

Assessment of the Correlation between Segregation Potential and Hydraulic Conductivity with Fines Fraction (세립분 함유량에 따른 동상민감성 지수와 수리전도도의 상관관계 평가)

  • Jin, Hyunwoo;Kim, Incheol;Eun, Jongwan;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.47-56
    • /
    • 2021
  • The cryosuction (negative pore pressure) in freezing soils causes groundwater migration from the frozen fringe to freezing front for ice lens formation. Frost heave and heaving pressure by ice lens cause damage to ground infrastructure. In order to prevent damage by the frost heave, various frost susceptibility criteria have been proposed. The SP (Segregation Potential) is the most widely used classification criterion for frost susceptibility in cold regions. The expansion of the ice lens by the migration of the groundwater is a key role in frost heave mechanism, and thus it is necessary to evaluate the hydraulic conductivity. In this paper, soil mixtures of coarse-fines (sand-silt) were prepared in various weight fractions and used for frost heave and column permeability test. For each case, the SP and the hydraulic conductivity were derived and correlations were analyzed. As a results, the transition threshold of the SP and the hydraulic conductivity were shown at 20% and 50% of the silt weight fraction, respectively. Although there are difference between these transition thresholds, these two coefficients show a specific correlation. In the future, additional study should be conducted for detailed analysis of the threshold transition values between SP and hydraulic conductivity.

Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material (레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석)

  • Lee, C.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

Geographical Isolation and Root-Associated Fungi in the Marine Terrains: A Step Toward Establishing a Strategy for Acquiring Unique Microbial Resources

  • Park, Jong Myong;Hong, Ji Won;Lee, Woong;Lee, Byoung-Hee;You, Young-Hyun
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.235-248
    • /
    • 2021
  • This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao's richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.

Assessment of the effect of fines content on frost susceptibility via simple frost heave testing and SP determination

  • Jin, Hyunwoo;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.393-399
    • /
    • 2022
  • The Segregation Potential (SP) is one of the most widely used predictors of frost heave in cold regions. Laboratory step-freezing tests determining a representative SP at the onset of the formation of the last ice lens (near the thermal steady state condition) can predict susceptibility to frost heave. Previous work has proposed empirical semi-log fitting for determination of the representative SP and applied it to several fine-grained soils, but considering only frost-susceptible soils. The presence of fines in coarse-grained soil affects frost susceptibility. Therefore, it is required to evaluate the applicability of the empirical semi-log fitting for both frost-susceptible and non-frost-susceptible soils with fines content. This paper reports laboratory frost heave tests for fines contents of 5%-70%. The frost susceptibility of soil mixtures composed of sand and silt was classified by the representative SP, and the suitability of the empirical semi-log fitting method was assessed. Combining semi-log fitting with simple laboratory frost heave testing using a temperature-controllable cell is shown to be suitable for both frost-susceptible and non-frost-susceptible soils. In addition, initially non-frost-susceptible soil became frost susceptible at a 10%-20% weight fraction of fines. This threshold fines content matched well with transitions in the engineering characteristics of both the unfrozen and frozen soil mixtures.