• Title/Summary/Keyword: segregated finite element

Search Result 10, Processing Time 0.023 seconds

Study of the semi-segregation algorithms of the incompressible Navier-Stokes equations using P2P1 finite element formulation (P2P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 반-분리 해법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.;Park, Jae-I.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.349-352
    • /
    • 2006
  • The conventional segregated finite element formulation produces a small and simple matrix at each step than in an integrated formulation. And the memory and cost requirements of computations are significantly reduced because the pressure equation for the mass conservation of the Navier-Stokes equations is constructed only once if the mesh is fixed. However, segregated finite element formulation solves Poisson equation of elliptic type so that it always needs a pressure boundary condition along a boundary even when physical information on pressure is not provided. On the other hand, the conventional integrated finite element formulation in which the governing equations are simultaneously treated has an advantage over a segregated formulation in the sense that it can give a more robust convergence behavior because all variables are implicitly combined. Further it needs a very small number of iterations to achieve convergence. However, the saddle-paint-type matrix (SPTM) in the integrated formulation is assembled and preconditioned every time step, so that it needs a large memory and computing time. Therefore, we newly proposed the P2PI semi-segregation formulation. In order to utilize the fact that the pressure equation is assembled and preconditioned only once in the segregated finite element formulation, a fixed symmetric SPTM has been obtained for the continuity constraint of the present semi-segregation finite element formulation. The momentum equation in the semi-segregation finite element formulation will be separated from the continuity equation so that the saddle-point-type matrix is assembled and preconditioned only once during the whole computation as long as the mesh does not change. For a comparison of the CPU time, accuracy and condition number between the two methods, they have been applied to the well-known benchmark problem. It is shown that the newly proposed semi-segregation finite element formulation performs better than the conventional integrated finite element formulation in terms of the computation time.

  • PDF

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Study on the flow inside an annular pipe with a periodic obstacle (주기적인 장애물을 가지는 환형 도관 내의 유동장에 대한 연구)

  • Ahn, Young-Kyoo;Choi, Hyoung-G.;Yong, Ho-Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.209-211
    • /
    • 2008
  • In this paper, a segregated finite element program for the analysis of an axisymmetric steady flow has been developed in order to investigate the flow inside an annular pipe with a periodic obstacle. For the verification of the developed code, a developing pipe flow has been solved and the solution is in a good agreement with the existing results. For the analysis of the flow inside an annular pipe with a periodic obstacle, three types of periodic obstacle are considered. From the present numerical analysis, various physical variables including flow pattern, pressure distribution and residence time are investigated as a preliminary study to the heat transfer analysis of an annular pipe flow with a periodic obstacle.

  • PDF

Analysis of Three Dimensional Mold-Filling Process in Injection Molding (사출성형의 3차원 충전공정 해석)

  • Choi K. I.;Koo B. H.;Cha B. S.;Park H. P.;Rhee B. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.269-272
    • /
    • 2005
  • For the three decades, the mold-filling of injection molding process was modeled as Hele-Shaw model. However, this model can not consider the 3D effect. In this paper, numerical simulations of three dimensional mold-filling during the filling phase were performed. The governing equations were discretized by segregated finite element method, which used equal order interpolation for pressure and velocity fields. The iterative linear equation solver (JCG, SOR) was employed for the solution of the momentum and pressure equations. Volume of Fluid (VOF) was employed for the melt front advancement. To check the validity of the numerical results, the results were compared with the experimental ones. The agreements between the experiment and the numerical results were found to be satisfactory.

  • PDF

Kinetic energy conservative algorithm in moving grid system using segregated finite element formulation (이동격자계에서 분리유한요소법에 의한 운동에너지 보존 알고리듬)

  • Seong, Jae-Yong;Choe, Hyeong-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1538-1551
    • /
    • 1997
  • Kinetic energy conservation for fixed and moving grids is examined in time-accurate finite element computation of fully unsteady inviscid flows. As numerical algorithms, fractional step method (FSM) and modified SIMPLE are used. To simulate the flow in moving grid system, arbitrary Lagrangian-Eulerian (ALE) method is adopted. In the present study, the energy conserving time integration rule for finite element algorithm is proposed and discussed schematically. It is shown that the discretization by Crank-Nicolson in time and Galerkin (central difference) in space must be used to ensure energy conservation. The developed code has been tested for a standing vortex in fixed or moving grid system, sloshing in a tank and propagation of a solitary wave, and has been shown to be a completely energy conserving algorithm.

CHARACTERISTICS OF MATRICES IN THE P2P1 FINITE ELEMENT METHODS FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATION (P2P1 유한요소를 이용한 비압축성 Navier-Stokes 방정식 해법들의 행렬 특성)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.245-251
    • /
    • 2009
  • Numerical algorithms for solving the incompressible Navier-Stokes equations using P2P1 finite element are compared regarding the eigenvalues of matrices. P2P1 element allocates pressure at vertex nodes and velocity at both vertex and mid nodes. Therefore, compared to the P1P1 element, the number of pressure variables in the P2P1 element decreases to 1/4 in the case of two-dimensional problems and to 1/8 in the three-dimensional problems. Fully-implicit-integrated, semi-implicit- integrated and semi-segregated finite element formulations using P2P1 element are compared in terms of elapsed time, accuracy and eigenvlue distribution (condition number). For the comparison,they have been applied to the well-known benchmark problems. That is, the two-dimensional unsteady flows around a fixed circular cylinder and decaying vortex flow are adopted to check spatial accuracy.

  • PDF

Streamline-Upwind Numerical Simulation of Two-Dimensional Confined Impinging Slot Jets (2차원 Confined 충돌 슬롯제트의 유선상류도식을 이용한 수치 해석)

  • Park, Tae-Hyun;Choi, Hyoung-Gwon;Yoo, Jung-Yul;Kim, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1663-1673
    • /
    • 2002
  • In the present paper, flow and heat transfer characteristics of confined impinging slot jets have been numerically investigated using a SIMPLE-based segregated SUPG finite element method. For laminar jets, it is shown that the skin friction coefficient obtained from the present SUPG formulation approaches the grid-independent Galerkin solution inducing negligible false diffusion in the flow field when a moderate number of grid points are used. For turbulent jets, the k-$\omega$turbulence model is adopted. The streamwise mean velocity and the heat transfer coefficient respectively agree very well with existing experimental data within limited ranges of parameters.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Segregated finite element method by introducing a improved open boundary condition (개선된 개방경계조건을 도입한 분리유한요소법)

  • Oh, Seung-Hun;Min, Tae-Gee;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.698-703
    • /
    • 2000
  • In a computational fluid dynamics, the imposition of open boundary condition has an important part of the accuracy but it is not easy to find the optimal boundary rendition. This difficult is introduced by making artificial boundary in unbounded domairs. Such open boundary requires us to ensure the continuity of all primitive variables because the nature is in continuum. Here we introduce a revised well-conditioned open boundary condition particularly in FEM and apply it to various problems-entrainment, body force, short domains.

  • PDF

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.