• Title/Summary/Keyword: segmentation-based video coding

Search Result 37, Processing Time 0.028 seconds

A NEW DETAIL EXTRACTION TECHNIQUE FOR VIDEO SEQUENCE CODING USING MORPHOLOGICAL LAPLACIAN OPERATOR (수리형태학적 Laplacian 연산을 이용한 새로운 동영상 Detail 추출 방법)

  • Eo, Jin-Woo;Kim, Hui-Jun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.288-294
    • /
    • 2000
  • In this paper, an efficient detail extraction technique for a progressive coding scheme is proposed. The existing technique using the top-hat transformation yields an efficient extraction scheme for isolated and visually important details, but yields an inefficient results containing significant redundancy extracting the contour information. The proposed technique using the strong edge feature extraction property of the morphological Laplacian in this paper can reduce the redundancy, and thus provides lower bit-rate. Experimental results show that the proposed technique is more efficient than the existing one, and promise the applicability of the morphological Laplacian operator.

  • PDF

Segmentation-based tnage Coding Method without Need for Transmission of Contour Information (윤곽선 정보의 전송이 불필요한 분할기반 영상 부호화 방법)

  • Choi Jae Gark;Kang Hyun-Soo;Koh Chang-Rim;Kwon Oh-Jun;Lee Jong-Keuk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.187-195
    • /
    • 2005
  • A new segmentation-based image coding method which no needs transmission of contour data is proposed. The shape information acts as bottleneck in the segmentation-based video coding because it has much portion of transmission data. The proposed method segments a previous decoded frame, instead of a current frame. As a result, there is no need for transmission of contour information to a decoder. Therefore, the saved bits can be assigned to encode other information such as error signals. As shown in experiment results, if data rate is very highly increased due to abrupt motion under very low bit rate coding having limited transmission bits, PSNR of conventional block-based method go down about 20dB, while the proposed method shows a good reconstruction quality without rapid PSNR drop.

Segmented Video Coding Using Variable Block-Size Segmentation by Motion Vectors (움직임벡터에 의한 가변블럭영역화를 이용한 영역기반 동영상 부호화)

  • 이기헌;김준식;박래홍;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.62-76
    • /
    • 1994
  • In this paper, a segmentation-based coding technique as applied to video sequences is proposed. A proposed method separates an image into contour and texture parts, then the visually-sensitive contour part is represented by chain codes and the visually-insensitive texture part is reconstructed by a representative motion vector of a region and mean of the segmented frame difference. It uses a change detector to find moving areas and adopts variable blocks to represent different motions correctly. For better quality of reconstructed images, the displaced frame difference between the original image and the motion compensated image reconstructed by the representative motion vector is segmented. Computer simulation with several video sequences shows that the proposed method gives better performance than the conventional ones in terms of the peak signal to noise ratio(PSNR) and compression ration.

  • PDF

A Study of Resolving the Over Segmentation in Image using ATMF (ATMF를 이용한 영상의 과분할 방지에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.735-740
    • /
    • 2005
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries, But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes that adaptive trimmed mean filter for resolving the over segmentation of image.

  • PDF

A Study on Parallel Processing System for Automatic Segmentation of Moving Object in Image Sequences

  • Lee, Hyung;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.429-432
    • /
    • 2000
  • The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOP’s). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOP’s so that each VOP represents a moving object. A parallel processing system is required an automatic segmentation to be processed in real-time, because an automatic segmentation is time consuming. This paper addresses the parallel processing: system for an automatic segmentation for separating moving object from the background in image sequences. The proposed parallel processing system comprises of processing elements (PE’s) and a multi-access memory system (MAMS). Multi-access memory system is a memory controller to perform parallel memory access with the variety of types: horizontal, vertical, and block access way. In order to realize these ways, a multi-access memory system consists of a memory module selection module, data routing modules, and an address calculation and routing module. The proposed system is simulated and evaluated by the CADENCE Verilog-XL hardware simulation package.

  • PDF

Effective segmentation of non-rigid object in a still picture and video sequences (정지영상/동영상에서 non-rigid object의 효율적인 영역 분할 방식에 관한 연구)

  • Lee, In-Jae;Kim, Yong-Ho;Kim, Jung-Gyu;Lee, Myeong-Ho;An, Chi-Deuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.17-31
    • /
    • 2002
  • The new MPEG-4 video coding standard enables content-based functionalities. Image segmentation is an indispensable process for it. This paper addresses an effective segmentation of non-rigid objects. Non-rigid objects are deformable objects with fuzzy, blurred and indefinite boundaries. So it is difficult to segment deformable objects precisely. In order to solve this problem, we propose an effective segmentation of non-rigid objects using watershed algorithms in still pictures. And we propose an automatic segmentation through intra-frame and inter-frame segmentation process in video sequences. Automatic segmentation preforms boundary-based and region-based segmentation to extract precise object boundaries.

Efficient Fast Motion Estimation algorithm and Image Segmentation For Low-bit-rate Video Coding (저 전송율 비디오 부호화를 위한 효율적인 고속 움직임추정 알고리즘과 영상 분할기법)

  • 이병석;한수영;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.211-214
    • /
    • 2001
  • This paper presents an efficient fast motion estimation algorithm and image segmentation method for low bit-rate coding. First, with region split information, the algorithm splits the image having homogeneous and semantic regions like face and semantic regions in image. Then, in these regions, We find the motion vector using adaptive search window adjustment. Additionally, with this new segment based fast motion estimation, we reduce blocking artifacts by intensively coding our interesting region(face or arm) in input image. The simulation results show the improvement in coding performance and image quality.

  • PDF

Fast Mode Decision using Global Disparity Vector for Multi-view Video Coding (다시점 영상 부호화에서 전역 변이 벡터를 이용한 고속 모드 결정)

  • Han, Dong-Hoon;Cho, Suk-Hee;Hur, Nam-Ho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.328-338
    • /
    • 2008
  • Multi-view video coding (MVC) based on H.264/AVC encodes multiple views efficiently by using a prediction scheme that exploits inter-view correlation among multiple views. However, with the increase of the number of views and use of inter-view prediction among views, total encoding time will be increased in multiview video coding. In this paper, we propose a fast mode decision using both MB(Macroblock)-based region segmentation information corresponding to each view in multiple views and global disparity vector among views in order to reduce encoding time. The proposed method achieves on average 40% reduction of total encoding time with the objective video quality degradation of about 0.04 dB peak signal-to-noise ratio (PSNR) by using joint multi-view video model (JMVM) 4.0 that is the reference software of the multiview video coding standard.

A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences (비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘)

  • Kim, Jun-Ki;Lee, Ho-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.430-441
    • /
    • 2002
  • Video object segmentation is an important component for object-based video coding scheme such as MPEG-4. In this paper, a robust algorithm for segmentation of moving objects in video sequences and VOP(Video Object Planes) extraction is presented. The points of this paper are detection, of an accurate object boundary by associating moving object edge with spatial object edge and generation of VOP. The algorithm begins with the difference between two successive frames. And after extracting difference image, the accurate moving object edge is produced by using the Canny algorithm and morphological operation. To enhance extracting performance, we app]y the morphological operation to extract more accurate VOP. To be specific, we apply morphological erosion operation to detect only accurate object edges. And moving object edges between two images are generated by adjusting the size of the edges. This paper presents a robust algorithm implementation for fast moving object detection by extracting accurate object boundaries in video sequences.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.