• Title/Summary/Keyword: segmentation method

Search Result 2,159, Processing Time 0.033 seconds

Automatic Detection of the Middle Tooth Crown Part for Full Automatic Tooth Segmentation in Dental CT Images

  • Lee, Chan-Woo;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we propose the automatic detection method which find the middle part of tooth crown to start individual tooth segmentation. There have been many studies on the automation of individual tooth segmentation, but there are still many problems for full automation. Detection of middle part of tooth crown used as initial information for individual tooth segmentation is closely related to performance, but most studies are based on the assumption that they are already known or they can be represented by using a straight line. In this study, we have found that the jawbone curve is similar to the tooth alignment curve by spatially analyzing the CT image, and propose a method to automatically detect the middle part of tooth crown. The proposed method successfully uses the jawbone curves to successfully create a tooth alignment curve that is difficult to detect. As the middle part of tooth crown is in the form of a tooth alignment curve, the proposed method detects the middle part of tooth crown successfully. It has also been verified by experiments that the proposed method works well on real dental CT images.

Intra-Sentence Segmentation using Maximum Entropy Model for Efficient Parsing of English Sentences (효율적인 영어 구문 분석을 위한 최대 엔트로피 모델에 의한 문장 분할)

  • Kim Sung-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.385-395
    • /
    • 2005
  • Long sentence analysis has been a critical problem in machine translation because of high complexity. The methods of intra-sentence segmentation have been proposed to reduce parsing complexity. This paper presents the intra-sentence segmentation method based on maximum entropy probability model to increase the coverage and accuracy of the segmentation. We construct the rules for choosing candidate segmentation positions by a teaming method using the lexical context of the words tagged as segmentation position. We also generate the model that gives probability value to each candidate segmentation positions. The lexical contexts are extracted from the corpus tagged with segmentation positions and are incorporated into the probability model. We construct training data using the sentences from Wall Street Journal and experiment the intra-sentence segmentation on the sentences from four different domains. The experiments show about $88\%$ accuracy and about $98\%$ coverage of the segmentation. Also, the proposed method results in parsing efficiency improvement by 4.8 times in speed and 3.6 times in space.

Semiautomatic segmentation for MPEG-4 encoding (MPEG-4 부호화를 위한 반자동 영상분할)

  • 김진철;김재환;하종수;김영로;고성제
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.97-100
    • /
    • 2001
  • In this paper, We propose a new semiautomatic segmentation method using spatio-temporal similarity. In the proposed scheme, segmentation is performed using gradual region merging and hi-direction at spatio-temporal refinement. Simulation results show the efficiency of the proposed method in semantic object extraction.

  • PDF

Knee Articular Cartilage Segmentation with Priors Based On Gaussian Kernel Level Set Algorithm (사전정보를 이용한 가우시안 커널 레벨 셋 알고리즘 기반 무릎 관절 연골 자기공명영상 분할기법)

  • Ahn, Chunsoo;Bui, Toan;Lee, Yong-Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.490-496
    • /
    • 2014
  • The thickness of knee joint cartilage causes most diseases of knee. Therefore, an articular cartilage segmentation of knee magnetic resonance imaging (MRI) is required to diagnose a knee diagnosis correctly. In particular, fully automatic segmentation method of knee joint cartilage enables an effective diagnosis of knee disease. In this paper, we analyze a well-known level-set based segmentation method in brain MRI, and apply that method to knee MRI with solving some problems from different image characteristics. The proposed method, a fully automatic segmentation in whole process, enables to process faster than previous semi-automatic segmentation methods. Also it can make a three-dimension visualization which provides a specialist with an assistance for the diagnosis of knee disease. In addition, the proposed method provides more accurate results than the existing methods of articular cartilage segmentation in knee MRI through experiments.

Improvement of Stixel Segmentation Using Additive Image Domain Features and Genetic Algorithm-based Optimization (영상 영역 특징 추가 및 유전 알고리즘 기반 최적화를 통한 스틱셀 분할 개선 방법)

  • Lee, Sunyoung;Suhr, Jae Kyu;Jung, Ho Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.565-574
    • /
    • 2015
  • Recently, a medium-level representation named "Stixel" has been extensively researched in stereo vision-based environmental perception. Obstacle detection using Stixel representation consists of three steps: static Stixel generation, dynamic Stixel generation, and Stixel segmentation. This paper focuses on the Stixel segmentation step and has two contributions. One is that it shows that Stixel segmentation performance can be enhanced by utilizing both image domain and real world domain features. The other is that it suggests that parameters used for Stixel segmentation can be effectively tuned based on genetic algorithm. The proposed method was quantitatively evaluated and the result showed that the proposed method increased Stixel segmentation accuracy compared with the previous method.

Watershed Segmentation with Multiple Merging Conditions in Region Growing Process (영역성장과정에서 다중 조건으로 병합하는 워터쉐드 영상분할)

  • 장종원;윤영우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.59-62
    • /
    • 2002
  • Watershed Segmentation with Multiple Merging Conditions in Region Growing Process The watershed segmentation method holds the merits of edge-based and region-based methods together, but still shows some problems such as over segmentation and merging fault. We propose an algorithm which overcomes the problems of the watershed method and shows efficient performance for .general images, not for specific ones. The algorithm segments or merges regions by thresholding the depths of the catchment basins, the similarities and the sizes of the regions. The experimental results shows the reduction of the number of the segmented regions that are suitable to human visual system and consciousness.

  • PDF

Range Image Segmentation Based on Polynomial Function Approximation (다항식 함수 근사화에 근거한 거리 영상 분할)

  • 임영수;조택일;박규호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1448-1455
    • /
    • 1990
  • In this paper, a range image segmentation method is proposed. This method consists of an initial segmentation stage by discontinuous edge detection and surface type labeling based on the sign of the principal curvatures. Initially type labeled image is oversegmented, this image is merged via stepwise optimal region merging stage based on polynomial function approxiamtion. The successful segmentation results are presented for two synthetic range images with noise and a real-world ERIM range image.

  • PDF

A Method for the Increasing Efficiency of the Watershed Based Image Segmentation using Haar Wavelet Transform (Haar 웨이블릿 변환을 사용한 Watershed 기반 영상 분할의 효율성 증대를 위한 기법)

  • 김종배;김항준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents an efficient method for image segmentation based on a multiresolution application of a wavelet transform and watershed segmentation algorithm. The procedure toward complete segmentation consists of four steps: pyramid representation, image segmentation, region merging and region projection. First, pyramid representation creates multiresolution images using a wavelet transform. Second, image segmentation segments the lowest-resolution image of the pyramid using a watershed segmentation algorithm. Third, region merging merges the segmented regions using the third-order moment values of the wavelet coefficients. Finally, the segmented low-resolution image with label is projected into a full-resolution image (original image) by inverse wavelet transform. Experimental results of the presented method can be applied to the segmentation of noise or degraded images as well as reduce over-segmentation.

Speaker Segmentation System Using Eigenvoice-based Speaker Weight Distance Method (Eigenvoice 기반 화자가중치 거리측정 방식을 이용한 화자 분할 시스템)

  • Choi, Mu-Yeol;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.266-272
    • /
    • 2012
  • Speaker segmentation is a process of automatically detecting the speaker boundary points in the audio data. Speaker segmentation methods are divided into two categories depending on whether they use a prior knowledge or not: One is the model-based segmentation and the other is the metric-based segmentation. In this paper, we introduce the eigenvoice-based speaker weight distance method and compare it with the representative metric-based methods. Also, we employ and compare the Euclidean and cosine similarity functions to calculate the distance between speaker weight vectors. And we verify that the speaker weight distance method is computationally very efficient compared with the method directly using the distance between the speaker adapted models constructed by the eigenvoice technique.

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.