• Title/Summary/Keyword: seepage water

Search Result 390, Processing Time 0.03 seconds

A Study of the Seepage through Sand-Constructed Model Dams. (모래로 축조된 댐 모형의 침투에 관한 연구(I))

  • 신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.64-82
    • /
    • 1980
  • The aim of this thesis, when water permeates dam, is to study the shape of seepage line and seepage quantity. As for the process, various sand model dams of same capacity were constructed in the water tank : they are a central, middle, inclined, up and down stream point of which is paralled, and filter-installed types. And the slope of seepage line and seepage quantity in these various models for experiment were measured, observed data were analyzed, and several formulas which already published were compared and examined. As for the shape of seepage line, the relation between upstream water level and exit: slope of seepage line, near the entrance and exit point, geometrically similar model, and the shape of seepage line filter-installed were examined. As regards to the seepage quantity, several formulas which already published and testing result values were compared and examined, and relation with the slope of seepage line, the seepage quantity, the slope of upstream point, and the upstream water level were mutually studied. Particulary, when horizontal filter was installed, propriety of the existing formulas for effective filter length w as examined, and the relative position of exit point in various. conditions was also studied.

  • PDF

Simulation of Effects of the Size of Embedded Rock Layer under Earth Fill on Seepage Problems of Sea-dike (방조제 바닥사석층의 규모가 제체 침투문제에 미치는 영향에 대한 모의 분석)

  • Lee Haeng Woo;Chang Pyoung Wuck;Song Chang Seob;Won Jeong Yun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Numerical analyses were carried out for studying on seepage problems due to seawater intrusion through the embedded rock layers of the sea-dike. A seepage analysis model, SAMTLE was developed fur two-layer embankment system. The analyses by SAMTLE showed that the size of embedded rock layer had a significant effect on the seepage problems of sea-dike. If the embedded rock layer is longer and thicker, the seepage problems become more serious to water head, seepage rate and safety factor of piping in embankment. On the other hand, if the width of embedded rock layer is equivalent to the sea-dike's bottom width, the water head becomes lower and seepage rate and safety factor of piping are dramatically increasing. This makes another seepage problems such that the fresh water becomes saltier and higher seepage rates result in internal erosion of sea-dike.

The Estimation of Seepage Blocking State with the Normalized Hydraulic Head Loss Rate at Each Seepage Segment in Sea Dike Embankment (정규화된 수두손실률에 의한 방조제 구간별 차수상태 평가)

  • Eam, Sung Hoon;Heo, Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.159-167
    • /
    • 2014
  • In this study the process of normalizing hydraulic head loss rate was developed for the purpose of estimation of seepage blocking state at each seepage segment in sea dike embankment. Pore water pressure sensors were installed with some interval along seepage path, then the hydraulic head loss rate at each segment between pore water pressure sensors was calculated, and then the calculated hydraulic head loss rate was normalized based on seepage path length. The comparison of normalized hydraulic head loss rates showed that the cross section of sea dike embankment was homogeneous approximately and the width of cross section was long enough to blocking tide water.

Variation of Seepage Line through Embankments by Permeability of Layer (지반의 투수성에 따른 제체 침투류의 변화)

  • 신진환;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 1996
  • The movement of water through a river embankment and its influenced upon the stability of the slope of the embankment are described. The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of water level. The variation of seepage line in the embankment model by a fluctuation of water level is discussed. The experimental models were construction with slopes of 1 : 1.5, 1 : 2.0, 1 : 2.5 and the flow velocity was turned from 60cm/sec~90cm/sec. Based on the experimental study, the following conclusions are drawn. 1) When water level is raised, the seepage line of downstream slope Is raised rapidly as flow velocity increases. 2) For the case of permeable layer, the seepage line raised rapidly as compare with impermeable layer when water lever is raised.

  • PDF

The Characteristics for Seepage Behaviour of Soil Structure by Modeling Tests (모형실험에 의한 토공구조물의 침투거동특성)

  • 신방웅;강종범
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.158-167
    • /
    • 1999
  • In parallel flow condition, to estimate the stability of the extended embankment constructed on a permeable foundation ground, a laboratory model test was performed due to extended materials and water level increasing velocity of a flood period. A laboratory model test was peformed for different permeability coefficients ($K_1=2.0{\times}10^{-5}cm/sec,\;K_2=1.5{\times}10^{-4}cm/sec,\;K_3=2.3{\times}10^{-3}cm/sec$) using seepage. The fluctuation of water level occurring to an extended embankment was analyzed by laboratory model tests as vary the increasing velocity of water level with 0.6cm/min, 1.2cm/min, 2.4cm/min respectively. In analysis results, the increase of water level into embankment occurs rapidly because seepage water moving along with a permeable soil flow into embankment. The larger the permeability coefficient of an extended part is the longer initial seepage distance, and the exit point of downstream slope is gradually increased and then shows unstable seepage behavior as occurring partial collapse. As the increasing velocity of water level increase, the initial seepage line is formed low, and the discharge increases. Therefore, the embankment extended by a lower permeable soil than existing embankment shows stable seepage behavior because an existing embankment plays a role as filter for an extended part.

  • PDF

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

Experimental Study on Seepage Losses in Earth Channel (흙 수로에 대한 삼수손실량 추정에 관한 실험적 연구)

  • 정하우;유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2853-2877
    • /
    • 1973
  • Models of cross-sections and channels were made in order to measure seepage losses. Cross-sections were made of sand, sandy clay loam and loam, their thicknesses being 30cm and 40cm, respectively. Flow depths kept in the cross-sections were 4cm, 6cm, 8cm and 10cm. Straight and curved channel models were provided so as to measure seepage losses, when constant water depths maintained at the heads of the channels were 7.3cm and 5.7cm, respectively. The results obtained in this experiment are presented as follows: 1) A cumulative seepage loss per unit length at a point in the channel varies in accordance with time and flow depth. The general equation of cumulative seepage loss may be as follows(Ref. to Table V.25): $$q_{cum}=\int_{o}^aq(a)dt+\int_a^bq(b)dt+\int_b^tq(c)dt$$ 2) In case that the variation of water depth through the channel is slight, the total seepage loss may be computed by applying the following general equation: $$\={q}_{cum}{\cdot}x=\int_o^tq_{cum}\frac{{\partial}x}{{\partial}t}dt$$ 3) Because seepage loss varies considerably according to water depth in case that the variation of flow depth through the channel is great, seepage loss should be computed by taking account of the change of flow depth. 4) The relation between time and traveling distance of water flow may be presented as the following general equation(Ref. to Table V.29): $$x=pt^r$$ 5) The ratios of the seepage losses of the straight channel to the curved channel are 1:1.03 for a flow depth of 7.3cm and 1:1.068 for that of 5.7cm. 6) The ratios of the seepage losses occurring through the bottom to those through the inclined plane in the channel cross-section are 1:2.24 for a water depth of 8cm and 1:2.47 for a depth of 10cm in case that soil-layer is 30cm in thickness. Similarly, those ratios are 1:2.62 and 1:2.93 in case of a soil-layer thickness of 40cm(Ref. to Table V.5).

  • PDF

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF

A Study on Seepage Characteristics in Case of Seaward Seepage Through Sea-dike (역경사 현태를 가진 방조제 성토층 단명에서의 침출현상 연구)

  • Hong, Byung-Man
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.43-51
    • /
    • 1998
  • In design and management of sea0dikes, engineers need to study various transient seepage conditions through dikes not only for the sea water infiltration into dikes due to cyclic rises of sea water level also for the seepage flow out from dikes toward the sea due to cyclic drawdown of sea water level. Characteristics of seepage flow toward the sea from dikes are more complicated than as known and remained unclearly. The case of such seepage flow may be explained by figuring out seepage characteristics in filter as a part of sea-dikes. Filters in most sea-dikes in Korea are inevitably placed with reversely inclined shape due to field construction conditions. Most computer programs for seepage analysis based on the various numerical methods give practically acceptable results, but for the case of reversely inclined section of filters any verification to apply them might be needed. In this study, large scaled model tests were executed to verify and understand seepage flow through earth-filled sea-dikes. The results from numerical analysis and model tests show some remarkable differences in pore pressure distribution under cyclic changes of see level, and some of the results need to be considered in design and construction practices with further study.

  • PDF