• Title/Summary/Keyword: seepage failure

Search Result 94, Processing Time 0.024 seconds

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

An Experimental Study on Suppression of Cavity Development by Enlargement of Base Plate of Box-Culvert Installed at River Levee (하천제방 배수통문의 저판확폭을 통한 공동발생 억제기법 연구)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dae-Young;Jin, Young-Ji
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Generally, the Box-Culvert in levee is destroyed by various reasons. Especially when Box-Culvert is installed over the pile foundation in soft ground, the failure occurrs for 1) the weakness of compaction in Box-Culvert side by the differential settlement between outer ground and inner soil prism, 2) hydraulic fracturing and disturbance of Box-Culvert side soil by the repeated acting of seepage pressure at flood time. Also the side of Box-Culvert is difficult to compact and the shear resistance is reduced by more than 1/3 for the reduction of friction caused by the difference of material property. In this study, a series of model tests are conducted for the analysis of the development mechanism of outer ground and inner soil prism by the differential settlement using the pile foundation in soft ground, and cavity suppressed technique is suggested by the analysis of base plate enlargement effect.

Assessment of The Priority Order of Monitoring Devices on Maintenance for The Long-Term Safety of Existing Fill Dam (기존 필댐 장기간 안전관리를 위한 계측항목 유지보수 우선순위 산정)

  • Lee, Jongwook;Jeon, Jaesung;Lim, Heuidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.67-79
    • /
    • 2009
  • Although readjustment of monitoring system for existing fill dam maintenance is needed by the sustainable increasing of the abandonment rate of monitoring devices by malfunction through the life-cycle of dam, monitoring plans for long-term dam safety has relied on the experience and the opinion of minor expert group without systematic and quantitative analysis on the failure modes and the priority order of monitoring devices on maintenance. In this study the priority order of monitoring devices of existing 5 fill dams was evaluated quantitatively based on the preceding study (Andersen et al, 1999) and the result recommended the establishment of real-time monitoring system for seepage, pore pressure and crest settlement as the readjustment plan for existing fill dam monitoring system. This readjustment plan matches well with the recommendation of PWRI (1984), JCOLD (1986) and the results from Bagherzadeh-Khakkahali and Mirghasemi (2005).

  • PDF

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope (불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향)

  • Kim, Yong Min;Lee, Kwang Woo;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1017-1025
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate matric suction distribution on a soil slope subjected to rainfall infiltration, which can consider the hydraulic-mechanical characteristics for the analysis. The soil-water characteristic curves (SWCC) are experimentally determined to estimate three types of hydraulic properties of domestic areas. Based on the physical properties, the distribution of matric suction is investigated by considering the major factors, such as soil conditions, rainfall intensities, and slope angles. It is found from the results of this study that the matric suction rapidly decreases with an increase in rainfall intensity, regardless a slope angle. The slope surface is more easily saturated when its saturated hydraulic conductivity is smaller than rainfall intensity, and for the case of multi-layered soil slope, hydraulic characteristics of slope surface has a significant influence on matric suction distribution.

Ground Subsidence Mechanism by Ground Water Level and Fine Contents (지하수위와 세립분 함유량에 따른 지반함몰 메커니즘)

  • Kim, JinYoung;Lee, SungYeol;Choi, ChangHo;Kang, JaeMo;Kang, KwonSoo;Jeong, HyoJin;Hong, JaeCheol;Lee, JaeSoo;Baek, WonJin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.83-91
    • /
    • 2017
  • Recently, ground subsidence frequently occurs in downtown area. The major causes of the subsidence on the subsurface were the damages of the water supply and sewer pipelines and excavation works in adjacent areas, etc. Because of these various factors, it is not easy to analyze the tendency of occurrence of ground subsidence. The purpose of this study is to clarify the effect of ground subsidence by the change of the fine particle content and ground water level and to establish the ground subsidence mechanism. In this study, a model soil-box was manufactured to simulate the failure of the old sewer pipe which is one of the causes on ground subsidence. And a model test was conducted to investigate the effects of fine contents and ground water level on the cavity occurrence. From the test results, firstly the higher the ground water level, the faster the primary cavity is formed as the seepage stress increases. As a result, the secondary cavity and the ground subsidence rapidly progress due to the relaxation of the surrounding ground. The total amount of discharged soil was decreased as the fine content increased.

Landslide Analysis of River Bank Affected by Water Level Fluctuation II (저수위 변동에 영향을 받는 강기슭의 산사태 해석 II)

  • Kim, You-Seong;Wang, Yu-Mei;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, the pore water pressure files obtained from seepage analysis were used to evaluate the change in factor of safety (FS) with reservoir water level. Slope stability analyses then were carried out, with fully specified slip surface and limit equilibrium method. In the limit equilibrium analysis, the contribution of negative pore water pressure to shear strength was considered by the use of Fredlund's shear strength equation for unsaturated soils. On the base of the analyses, the change of FS with reservoir water level was interpreted in detail. It was found that FS against bank slopes decreases with the rise of the reservoir water level and increases with the drawdown of the reservoir water level. The most dangerous state was when the reservoir water level stays at the highest for a long time.

  • PDF

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Proposal of Design Method for Landslides Considering Antecedent Rainfall and In-situ Matric Suction (선행강우와 현장 모관흡수력을 고려한 산사태 해석 방법 제안)

  • Kim, Jung-Hwan;Jeong, Sang-Seom;Kim, Yong-Min;Lee, Kwang-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.11-24
    • /
    • 2013
  • This study presents a design method for typical rainfall-induced landslide considering in-situ matric suction. Actual landslide data are used to validate the proposed method. The soil-water characteristic curve (SWCC) and unsaturated permeability are experimentally determined to estimate hydraulic properties of testing site. The field measurement of matric suction is carried out to monitor in-situ matric suction in a natural slope subjected to rainfall infiltration, which is incorporated in the landslide analysis. The wetting band depth and safety factor of the slope are assessed to clarify the effect of domestic rainfall pattern. Especially, the effect of antecedent rainfall on the slope stability is investigated and discussed in terms of wetting band depth using parametric study. It is found from the result of this study that proposed design method can consider the characteristic of unsaturated soil and effect of antecedent rainfall. The location of the scarp zone is fairly well predicted by proposed design method. Moreover, heavy rainfall, concentrated in the backward part with time, causes the lowest safety factor of the slope. These results demonstrate that decrease in matric suction due to antecedent rainfall may trigger slope instability. After the antecedent rainfall, additional rainfall may cause the slope failure due to increasing wetting band depth.