• 제목/요약/키워드: seepage analysis

검색결과 326건 처리시간 0.025초

댐 비상방류 설계기준 선정을 위한 수리수문학적 검토(I) (Hydraulic & Hydrologic Design Criteria for an Emergency Discharge of Reservoir (I))

  • 손광익;이재응
    • 한국수자원학회논문집
    • /
    • 제48권3호
    • /
    • pp.149-158
    • /
    • 2015
  • 비상방류시설은 안전한 댐 운영 및 유지관리를 위해서 절대적으로 필요한 시설임에도 불구하고 국내 댐의 경우 이를 고려한 설계가 이루어지지 않아 각 댐의 비상방류 대응 적정성을 판단하기 곤란한 상황이다. 특히 국내 댐의 경우 비상방류시설규모를 산정하는 기준이 일정치 않을 뿐만 아니라 대부분의 용수댐은 별도의 방류시설 조차도 없는 실정이다. 따라서 본 연구에서는 기존댐 방류시설 현황 분석, 국내외 비상방류시설 설계기준 등의 검토와 함께 국내 댐설계기준을 적용한 가상 댐체와 수어댐을 대상으로 수위에 따른 방류능 분석을 수행하였다. 또한 SEEP 프로그램 등을 활용, 수위저하 속도에 따른 제체의 사면 안정성을 검토함으로써 비상방류 시설의 적정규모 산정기준을 제시하고자 하였다. 이를 위하여 수리학적 해석을 통해 저류수심에 따른 제체에 작용하는 힘을 분석하였으며 수위저하 속도 변화에 따른 제체의 안정성을 검토하여 허용수위저하 속도 범위를 제시하였다. 수위 25% 저감은 하중을 50%까지 감소시켜 초기수위 저감이 중요한 것을 알 수 있었다. 가상 댐체는 물론 수어댐에 수위저하 속도 1 m/일을 적용하더라도 제체의 안전성은 보장됨을 확인하였다. 다만, 방류능과 방류 소요일수는 수위별 저류용량 등 저류지 특성과 밀접한 관계가 있어 초기대응을 위해서는 7~10일 이내에 저류수심의 25%를 먼저 방류시키고 나머지 방류량은 1~2개월 이내에 방류할 것을 제안하였다.

조위변동(潮位變動)으로 인한 호안제내(護岸堤內)의 침투(浸透) (Seepage in to a Dike due to Tidal Fluctuation)

  • 김상규
    • 대한토목학회논문집
    • /
    • 제5권3호
    • /
    • pp.71-84
    • /
    • 1985
  • 포화(飽和) 및 비포화(非飽和) 흐름을 함께 적용할 수 있는 transient flow 방정식(方程式)을 사용하여 조위(潮位)의 상계(上界) 하강(下降)에 따른 호안제(護岸堤) 내(內) 수두(水頭의) 시간적(時間的) 변화(變化)를 구하였다. 계산(計算)은 FEM 기법(技法)을 써서 흙 속의 흐름 문제를 해석하도록 개발(開發)된 전산(電算)프로그램 FLUMP로 행 하였는데, 본(本) 연구(硏究)에서 조위상승시(潮位上昇時)에도 적용할 수 있도록 이것을 일부분(一部分) 보완(補完)하였다. 호안제(護岸堤)는 두 가지 재료(材料)로 구성된 것으로 보고 10m의 일정(一定)한 조차(潮差)로 인한 제체(제체) 내(內) 수두(水頭)의 시간적(時間j的) 변화(變化)를 최대 96 시간까지 계산하였다. 제체(堤體) 배면(背面)의 지하수위(地下水位)는 최저(最低) 조위(潮位)로부터 0 m, 5 m, 및 10 m의 위치에 있다고 가정하고 제체(堤體) 내(內) 수두(水頭)가 지하수위(地下水位)의 위치에 따라 어떻게 평형되어가는가 알아보았다. 해석결과(解析結果)에 의하여 조위(潮位) 상계(上界) 하강(下降)에 대응(對應)하여 제체(堤體) 내(內) 수두(水頭)도 변화(變化)하나 수두(水頭)의 변화진폭(變化振幅)은 위치마다 다르다는 것을 알게 되었다. 즉(卽), 제체(堤體)의 상류면(上流面) 지단(趾端)에서 수두(水頭)의 진폭(振幅)이 가장 크고 상류면(上流面)에서 제체(堤體) 내(內)로 멀어질수록 진폭(振幅)은 차츰 줄어들며, 어느 위치를 넘어서면 수두(水頭)는 조위변동(潮位變動)의 영향을 받음이 없이 제체(堤體) 배면(背面)의 지하수위(地下水位)에 상응(相應)하는 어떤 평형된 수두(水頭)를 향(向)하여 안정(安定)되어간다. 제체(堤體)가 일시(一時)에 축조되었다고 가정하면 96 시간이 경과하였을 때 제체(堤體) 내(內) 수두(水頭)는 안정(安定)된 위치로 대락(大略) 접근(接近)하였다.

  • PDF

지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가 (Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality)

  • 김창훈;류정아;김덕근;김규범
    • 지질공학
    • /
    • 제26권2호
    • /
    • pp.251-260
    • /
    • 2016
  • 댐 저수지의 높은 수위와 댐 외부 지역의 지하수위간의 수두 차이는 지질 방벽을 통한 물의 흐름을 발생시킨다. 이로 인하여 발생한 유역 외 지역의 얕은 지하수위는 토양 습윤화를 초래하여 토지이용에 제약을 가져온다. 본 연구에서는 습윤화가 진행된 소유역내에 지하 1~1.5 m 심도에서 유공관 등의 배수시설을 설치한 후 그 효과를 분석하였다. 배수시설 설치 이전에 비하여 지하수 관측정에서의 수위는 1 m 이상 하강한 것으로 나타났으며, 저수지와 인접한 골짜기 상류(W1 지점)의 경우에는 2m 이상 하강하여 지하수의 빠른 배출에 의한 효과가 발생하였다. 또한, 지역 내 토양수분함량 및 그 표준편차도 감소하여 배수시설에 의한 지하수위 하강이 토양 습윤화를 억제한 것으로 분석되었다. 댐의 설계 시에는 지형지리적 특성을 고려하여 수두 차이에 의한 외부 지역으로의 누수 현상 예측 및 관련 대책을 수립해 나가야 한다.

농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증 (Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam)

  • 김형신;문성우;임국묵;서용석
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.381-393
    • /
    • 2021
  • 농업용 저수지 제체에 대한 그라우팅 주입효과 확인방법을 검증하기 위하여 물리·역학적 방법, 수리학적 방법, 지구물리학적 방법을 적용하여 결과를 분석하였다. 실내시험과 현장시험을 통하여 획득한 데이터들은 그라우팅 주입단계에 따라 ① 그라우팅 이전, ② 그라우팅 중 ③ 그라우팅 직후, ④ 그라우트재재령 28일 이후로 구분하여 획득되었다. 시추과정에서 획득되는 단위중량, 압축강도, 마찰각, 점착력, N값(관입저항치)의 경우 지반 개량을 확인할 수는 있지만, 지반의 불균질성에 기인하는 한계도 나타났다. 현장 투수시험으로 측정된 투수계수는 그라우트재가 고결되기 이전에도 차수성이 확인되어 그라우팅 직후에 저수지 제체의 개량효과를 확인하기에 가장 적합한 것으로 나타났다. 전기비저항탐사는 그라우팅 이전 저수지 제체에 발달하는 포화대와 누수영역 파악 활용에 적합하였다. 표면파탐사(MASW)는 그라우팅 주입 이후에 탄성파속도가 점차적으로 증가하는 경향성이 뚜렷하여 개량효과를 판단하는데 효과적인 것으로 판단되며, 탄성파 속도를 이용하여 동적특성을 산정할 수 있으므로 내진설계의 기초자료로 활용될 수 있을 것으로 기대된다.

도심지 대심도 터널의 지하수 변동 영향 제어 방안 (Groundwater control measures for deep urban tunnels)

  • 정재호;김강현;송명규;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제23권6호
    • /
    • pp.403-421
    • /
    • 2021
  • 제1기~제3기 지하철로 대표되는 우리나라 도심지 터널에는 대부분 관용터널공법에 의한 배수형 터널형식이 적용되어 있으나, 최근 도심지 대심도 공간을 적극적으로 활용하는 건설사업이 광범위하게 추진되고 있다는 점을 고려할 때, 기존 도심지 터널의 경험적 규칙에 부합하지 않는 부정적 영향이 발생할 수 있는데, 특히 주로 배수형식을 적용해 온 우리나라 터널기술 관행 상, 지하수 변동과 그에 따른 수리역학적 거동이 발생할 가능성이 크다. 배수형 터널형식 적용의 문제를 해결하기 위해 지하수 변동을 제어하는 시도가 이루어지고 있는 바, 그러한 경우에 필요한 터널 지하수 관리기준의 개념 설정 및 터널수리역학적 거동에 대한 분석을 수행하였다. 도심지 대심도 터널 건설로 인한 지하수 변동 문제를 예방하기 위해서는 현재, 수위를 획일적으로 제어하는 내용의 지하수 관리기준이 지하안전영향평가 단계에서만 적용되고 있는 경험적 기술관행과 관련하여, 터널 내 유입량을 제어하는 방향으로 개념전환이 필요하다는 점을 제시하고, 터널 계획시 허용유입량 설정에 필요한 지하수위 - 터널 내 유입량 관계를 도출하였다. 이러한 터널 지하수 관리개념의 도입이 향후 추진될 다양한 도심지 대심도 터널 건설사업에서 지하수 변동과 그로 인한 지반침하, 지하수자원 고갈 및 유지관리 성능저하 등의 문제 해결에 도움이 될 것으로 판단된다.

CCS 기술의 CDM 사업화 수용에 대한 방식과 절차 분석 및 대응방안 고찰 (Analysis of Modality and Procedures for CCS as CDM Project and Its Countmeasures)

  • 노현정;허철;강성길
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권3호
    • /
    • pp.263-272
    • /
    • 2012
  • 유엔기후변화협약회의(UNFCCC)에서는 이산화탄소 포집 및 저장(Carbon dioxide capture and storage, CCS)의 부족한 경제성 확보 및 개발도상국으로의 확대의 하나의 방편으로 CCS를 청정개발체제(Clean Development Mechanism, CDM)로 수용하는 것에 대한 논의가 2005년부터 진행되었다. CCS의 CDM 수용과 관련하여 CCS 기술보유국 및 산유국과 개발도상국간의 의견차이로 인하여 합의를 이루지 못하고 논의가 거듭되다, '10.12월 칸쿤 회의결과, CCS의 CDM 수용 가능성에 대해 합의가 이루어졌다(CMP[2010], Decision7/CMP.6). 당시 당사국들은 CCS의 CDM 수용을 위해 방식 및 절차에 관련한 주요 이슈, 즉, 1) 저장지 선정, 2) 모니터링, 3) 모델링, 4) 경계, 5) 누수 측정 및 계산, 6) 월경 효과, 7) 연계프로젝트 배출 계산, 8) 위해성 및 안전성 평가, 9) CDM 체제하의 책임 등에 대한 합의를 우선 요구하였으며, 동기간 동안 과학 기술자문부속기구(SBSTA)에서는 의견 교환 및 워크숍 개최 등을 통해 방식 및 절차에 대한 초안을 마련하였다. 이 초안을 바탕으로 '11년 12월 남아공 더반 회의에서 마침내 CCS기술을 CDM으로 수용키로 최종 합의하였다(CMP[2011], Decision-/CMP.7). CCS의 CDM 수용은 단순히 경제적 인센티브의 제공이라는 의미를 넘어 CCS 기술이 국제사회에서 이산화탄소 저감기술로 공식적으로 인정받았다는 것을 의미하기에 국내의 관련 기술 및 산업뿐만 아니라 법 정책적 측면에서도 큰 영향을 미칠 것으로 보인다. 이에 본 논문에서는 각 이슈들에 대한 국제적 논의 동향을 분석하고, 이를 통해 현재 우리나라가 계획하고 있는 CCS 실용화를 위해 선행되어야 할 정책적 고려 사항을 도출하였다. 금번에 채택된 CCS기술의 CDM 체제 방식 및 절차에 따르면, 우리나라와 같은 비부속서 I 당사국도 방식 및 절차에서 제시한 법 제도를 수립할 경우 CCS CDM 사업 활동 수행이 가능하다. 현재 우리나라는 상위법인 '저탄소 녹색성장 기본법'이 제정되어 있으나 CCS CDM 방식과 절차에서 요구하고 있는 세부 법 제도 프레임웍은 미비한 상황이다. 따라서 단기적으로 포집, 수송, 저장 분야 별로 관련법 개정을 통해 CCS CDM 기반 조기 마련과 함께 장기적으로는 단일법 제정을 포함한 CDM 체제 하의 CCS 사업관련 종합적 법제도 기반을 준비할 것을 제언하고자 한다.