• Title/Summary/Keyword: seed-coating

Search Result 113, Processing Time 0.204 seconds

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

Influence of thermal annealing on hybrid Organic Solar Cell with ZnO nanowire

  • Park, Seong-Hwak;Kim, Jong-Hyeon;Jo, Jin-U;Kim, Seong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.317-317
    • /
    • 2010
  • ZnO나노와이어는 높은 투과도, 화학 및 열적 안정성을 가지며, 유기태양전지에 적용하였을 때 Active Layer의 표면적 증가, 전자의 수집 및 전달에 용이한 장점가지고 있어 하이브리드 유기 태양전지에 적용되고 있다. ZnO나노와이어와 P3HT/PCBM을 사용한 하이브리드 유기태양전지는 Active Layer의 열처리 온도를 변화시켜 ITO/AZO/ZnO wire/PCBM:P3HT/PEDOT:PSS/Ag구조로 제작되었다. ZnO나노와이어는 AZO를 Seed로 사용하고 Znc nitrate hydrate와 hexamethylenetetramine을 혼합하여 수열합성법으로 성장 후, P3HT:PCBM, PEDOT:PSS을 Spin Coating법으로 형성하였다. UV-vis와 Solar simulator를 통하여 Active Layer의 열처리 온도에 따른 태양전지의 특성을 분석하였다.

  • PDF

Growth Behavior of Ga-Doped ZnO Thin Films on Au/SiNx/Si(001) Substrate Grown by RF Sputtering

  • Kim, Ju-Hyeon;Lee, Mu-Seong;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.463-463
    • /
    • 2013
  • This paper reports the synthesis and characterization of ZnO:Ga nano-structures deposited on Au/SiNx/Si(001) by radio-frequency sputtering. The effect of the temperature on the microstructure of the as-grown ZnO:Ga thin films was examined. The growth mode of ZnO:Ga nano-structures can be explained by the profile coating, i.e. the ZnO nano-structures were formed with a morphological replica of Au seeds. Initially, the ZnO:Ga nano-structures were overgrown on top of Au nano-crystals. Small ZnO:Ga nano-dots were then nucleated on hexagonal ZnO:Ga discs.

  • PDF

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Environmental Factors Favoring the Disease Development and Chemical Control of Clubroot(Plasmodiophora brassicae) in Chinese Cabbage (배추 무사마귀병(Plasmodiophora brassicae)의 발병유인 및 약제방제)

  • Oh, Jeung-Haing;Cho, Jang-Hwan;Kim, Bong-Gu;Chae, Je-Chun;Chung, Gil-Ung;Hwang, Chul-Ho;Kim, Doo-Wook
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.244-247
    • /
    • 1997
  • The experiment was conducted to obtain a basic information on the enviroumental factors favoring the disease development and chemical control of clubroot in chinese cabbage. The inoculation by insertion of infested soil was the most effective for the disease development as compared to the other inoculation methods such as pouring the spore suspension into soil and dipping roots into the spore suspension. On the environmental factors favoring the clubroot development, optimum slil pH and soil temperature were pH 5-6 and $20{\sim}30^{\circ}C$, respectvely. The combination of soil treatment and seed coating treatment was more effective than each single treatment in the chemical control of clubroot by 0.5% of fluazinam dust.

  • PDF

Fabrication of Polyethylene Films Coated with Antimicrobials in a Binder and Their Application to Modified Atmosphere Packaging of Strawberries (결착제 함유 항균성 물질로 코팅한 폴리에틸렌 필름의 제조 및 이를 이용한 딸기의 환경기체조절포장)

  • 김영민;이상백;조성환;이동선
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • As am economical and effective way of antimicrobial film fabrication , antimicrobial agents were coated on the LDPE film with a binder mediu. the fabricated films were then applied tomodified atmosphere packaging of fresh strawberries. A binder of polyamide was selected for the coating medium, based on the stability in water. 1% grapefruit seed extract-coated film showed the antimicrobial activity on the plate media against EScherichia coli, Staphylococcus aureus, bacillus subtilis , Bacillus cereus, Leuconostoc mesenteroides, Micrococcus flavus, Saccharomyces cerevisiae, while one with 10% Coptis chinesis extract inhibited only M. 림편 and one coated with 10% rheum palmatum extract did not inhibit any of 10 strains tested. The packages of fresh strawberries by using antimicrobial agents-coated films created the gas compositions of O2 1.4-5.5% and CO2 5.7-7.9%, and contributed to reduced growth of total aerobic bacteria and yeast/molds on the produced. However, their lower microbial count was not correlated directly with the reduced decay of the fruits.

  • PDF

Large-Scale Synthesis of Plate-Type ZnO Crystal with High Photocatalytic Activity (광촉매 활성이 우수한 판상형 ZnO 결정의 대용량 합성)

  • Kim, Da-Jung;Kim, Bo-Mi;Joe, Ara;Shim, Kyu-Dong;Han, Hyo-Won;Noh, Gyung-Hyun;Jang, Eue-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.148-155
    • /
    • 2015
  • ZnO nanoplates were prepared by seed-mediated soft-solution process. Photocatalytic property of ZnO nanoplates was superior to that of conventional ZnO nanoparticles owing to the enhanced (0001) plane with large defect sites. In addition, we found that silica coating method could provide to reduce cytotoxicity of ZnO nanoplates. Finally, we have successfully synthesized for the first time large-scale synthesis of plate-type ZnO as few hundreds gram scale for industrial applications through controlling various reagents of growth solution.

Seeding Effects on Phase Transformation in Diol-Based Sol-Gel Derived PZT Film (졸-겔 공정에 의해 Diol을 기반으로 제조된 PZT막 상전이에 대한 종자 영향)

  • An, Byung-Hun;Whang, Chin-Myung
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1181-1187
    • /
    • 1999
  • PZT(53/47) precursor 1M sols were prepared using a diol based Sol-Gel process, and thin films were deposited by spin coating onto Pt/Ti/$SiO_2$/Si substrates. With a single coating, final film thickness of aproximately 0.9${\mu}m $ was achieved from diol-based PZT sol. Since PZT crystallized in a ferroelectric perovskite phase from an intermediate nonferroelectric pyrochlore phase, the effects of the presence of perovskite PZT seeds on the phase transformation of PZT were investigated. Seeded PZT films were prepared from the seeded PZT 1M sols in which seeds with less than 0.2${\mu}m $ in size and 1wt% were dispersed in n-propanol before mixing with the PZT stock solution. The seeding effects were confirmed by the fact that the formation temperature of perovskite phase decreased by 50$^{\circ}C$ with less than 1wt% seeds.

  • PDF

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

STRATEGIC RESEARCH AT ORNL FOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - I

  • Christen, D.K.;Cantoni, C.;Feenstra, R.;Aytug, T.;Heatherly, L.;Kowalewski, M.M.;List, F.A.;Goyal, A.;Kroeger, D.M.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.339-339
    • /
    • 2002
  • In the RABiTS approach to coated conductor development, successful (both economic and technological) depends on the refinement and optimization of each of three important components: the metal tape substrate, the buffer layer(s), and the HTS layer. Here we will report on the ORNL approach and progress in each of these areas. - Most applications will require metal tapes with low magnetic hysteresis, mechanical strength, and excellent crystalline texture. Some of these requirements are competing. We report on progress in obtaining a good combination of these characteristics on metal alloys of Ni-Cr and Ni-W. - The deposition of appropriate buffer layers is a crucial step. Recently, base research has shown that the presence of a stable sulfur superstructure present on the metal surface is needed for the nucleation and epitaxial growth of vapor-deposited seed buffer layers such as YSZ, CeO$_2$ and SrTiO$_3$. We report on the details and control of this superstructure for nickel tapes, as well as recent results for Cu and Ni-13%Cr. - Processes for deposition of the HTS coating must economically provide large values of the figure-of-merit for conductors, current x length. At ORNL, we have devoted efforts to a precursor/post-annealing approach to YBCO coatings, for which the deposition and reaction steps are separate. We describe motivation for and progress toward developing this approach. - Finally, we address some issues for the implementation of coated conductors in real applications, including the need for texture control and electrical stabilization of the HTS coating.

  • PDF