• Title/Summary/Keyword: seed sprout

Search Result 144, Processing Time 0.024 seconds

A Study on the Composition of Sunflower Seed Sprout (Sunflower Seed Sprout의 성분조성에 관한 연구)

  • 이영근
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.9 no.1
    • /
    • pp.74-80
    • /
    • 1999
  • The proximate composition, pH, vitamins and minerals in sunflower seed sprout were investigated to furnish basic data for utilization in health food or processed food. The pH of sunflower seed sprout was 5.70. The contents of moisture, crude protein, crude fat, crude ash and crude fiber of sunflower seed sprout were 94.7%, 1.3%, 0.3%, 1.3% and 1.6%, respectively. The vitamin A, vitamin B$_1$, vitamin B$_2$, vitamin C and niacin contents in sunflower seed sprout were 114.411. U%, 0.06mg%, 0.05mg%. 5.90mg% and 0.80mg%, respectively. The contents of Ca, P, Fe, Na, K, Mn, Cu, Zn and Mg in sunflower seed sprout per 100g were 80.00mg, 4.85mg, 3.63mg, 8.25mg, 180.90mg, 1.35mg, 0.43mg, 1.85mgand 66.35mg, respectively. The crude ash and crude fiber content of sunflower seed sprout were 3 or 4 times higher than those in the sprout of radish seed, mung bean, soybean or alfalfa, respectively.

  • PDF

Variation of β-carotene Concentration in Soybean Seed and Sprout

  • Kang, Eun-Young;Kim, Eun-Hye;Chung, Ill-Min;Ahn, Joung-Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.324-330
    • /
    • 2012
  • In this study, ${\beta}$-carotene concentrations was determined in soybean cultivar according to seed size, usage, seed coat color and cotyledon color as well as the process of seed germination. The total average concentration of ${\beta}$-carotene was $6.6{\mu}g/g$ in soybean seed, $33.3{\mu}g/g$ in soybean sprout. According to seed size, the total ${\beta}$-carotene concentration of soybean was $6.9{\mu}g/g$ in large soybean seed, $6.7{\mu}g/g$ in medium soybean seed, and $6.31{\mu}g/g$ in small soybean seed. In soybean sprout, the total ${\beta}$-carotene concentration was $21.4{\mu}g/g$ in large soybean sprout, $30.5{\mu}g/g$ in medium soybean sprout, and $43.5{\mu}g/g$ in small soybean sprout. According to the utilization of seed, the total ${\beta}$-carotene concentration of soybean seed was $7.2{\mu}g/g$ in cooked with rice soybean seed, $6.1{\mu}g/g$ in paste and curd soybean seed, and $6.3{\mu}g/g$ in sprout soybean seed. In soybean sprout, the total ${\beta}$-carotene concentration was $25.9{\mu}g/g$ in cooked with rice soybean sprout, $32.4{\mu}g/g$ in paste and curd soybean sprout, and $41.9{\mu}g/g$ in sprout soybean sprout. When comparison with seed coat color, the total ${\beta}$-carotene concentration of soybean with brown seed coat ($8.8{\mu}g/g$) was slightly higher than those of soybean with yellow ($6.1{\mu}g/g$). In soybean sprout, the total ${\beta}$-carotene concentration was $21.8{\mu}g/g$ in black seed coat sprout, $38.7{\mu}g/g$ in brown seed coat sprout, $34.1{\mu}g/g$ in green seed coat sprout, $39.5{\mu}g/g$ in yellow seed coat sprout, and $30.5{\mu}g/g$ in mottle seed coat sprout. The results of this study suggested the functional characteristics of soybean through quantitative analysis of ${\beta}$-carotene.

Soybean Seeds Damaged by Riptortus Clavatus (Thunberg) Reduce Seed Vigor and Quality of Bean Sprout Produce

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Young-Jin;Kim, Kyong-Ho;Paik, Chae-Hoon;Kim, Tae-Soo;Kim, Jung-Gon;Cho, Youngkoo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.439-447
    • /
    • 2010
  • Riptortus clavatus, one of the many insects in major crops, damages pods and seeds, which reduces seed vigor and viability in soybeans. This study was conducted to examine the effect of diversely damaged seeds by R. clavatus on seed germination and seedling emergence and to determine the association of damaged seed with quality and yield of soybean sprouts. All seeds damaged by R. clavatus significantly (P<0.05) reduced seed vigor as measured by the rates of seed germination, germination speed, and seedling emergence. Mean seed germination rate of non-damaged seeds in sprout-soybean varieties was 97.8%, whereas the rates of seeds damaged at different levels, 31-50% and 51-80%, were 23.0 and 5.4%, respectively. The rates of seedling rot and abnormal, incomplete germination significantly (P<0.05) increased as the amount of seeds damaged by R. clavatus increased to 5, 10 and 15% against the total seeds for sprout production. Yield of soybean sprouts from seeds damaged at different levels decreased up to 13% as compared to that in normal seeds. In customer preferences on soybean sprout produce, 84% of customers participated in survey preferred to purchase sprouts from seeds with 5% of damaged seeds, but sprouts produced from seeds with 15% of damaged seeds were intended to purchase only by 22% of the customers. Areas of the seed damaged by R. clavatus were readily infected by pathogens as the seed germinated, resulted in deteriorated quality and reduced yield of sprout produce.

Effect of Endophytic Bacterium Inoculation on Seed Germination and Sprout Growth of Tartary Buckwheat

  • Briatia, Xoxiong;Khanongnuch, Chartchai;Azad, Md Obyedul Kalam;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.712-721
    • /
    • 2016
  • This experiment was conducted to investigate the endophytic bacterium Herbaspirillum spp effect on seed germination and sprout growth of tartary buckwheat. Inoculant concentration (%v/v) and seed soaking time were applied 10, 20 and 40% and 0, 4, 8, 12 hour, respectively. The experiment was carried out in a growth chamber maintained temperature at 20, 25 and $30^{\circ}C$ without light for 7 days. Results showed that, 10 to 20% (v/v) inoculant concentration by 4 to 8 h seed soaking time at $20^{\circ}C$ temperature increased seed vigor rate and total seed germination rate 80-95% and 90-100%, respectively. On the other and, seed inoculation with Herbaspirillum spp. increased hypocotyl length (13-15 cm), root length (8-11 cm), total fresh weight (135-296 g) and total dry weight (7-10 g), compared to control. It is indicated that sprouts growth and yield depends on inoculation concentrations, seed soaking time and temperature. Therefore, it would be suggested that seed inoculation with Herbaspirillum spp. at concentration of 10 to 20% (v/v), soaking time 4 to 8 h and temperature $20^{\circ}C$ promote seed germinations and sprout growth rate of tartary buckwheat.

Isoflavone Composition within Each Structural Part of Soybean Seeds and Sprouts

  • Phommalth, Siviengkhek;Jeong, Yeon-Shin;Kim, Yong-Hoon;Hwang, Young-Hyun
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Isoflavone content in various parts of six soybean cultivars and soybean sprout during germination was analyzed by high performance liquid chromatography. The parts analyzed were seed coat, cotyledon, and axis for seeds and whole sprout, root, hypocotyl, and cotyledon for sprout. Two cultivars, Aga3 which is known to have the smallest seed size and the highest isoflavone content among the Korean soybean cultivars and Pungsannamulkong which is the most widely being used as soy-sprout, were selected for sampling from 1 to 10 days after germination. At the same weight, the order of isoflavone content increased from seed coat to cotyledon to axis. The highest total isoflavone(isoflavone$\times$dry weight) content was observed in the cotyledon and the lowest in the seed coat. The cotyledon of the Aga3 variety had the highest total isoflavone content and the lowest was measured in the Pungsannamulkong variety. The highest total isoflavone content, $10,788{\mu}g/g$, was observed in whole sprouts(cotyledon+hypocotyl+root) on day 7 for Aga3. After day 7, there was a decreasing trend in isoflavone content as the germination period increased. Total isoflavone content in the cotyledon of Aga3 significantly increased after seed germination, whereas the isoflavone content in the cotyledon of Pungsannamulkong decreased. However, total isoflavone content in the root of both varieties increased while isoflavone content in the hypocotyls decreased after seed germination.

  • PDF

Analysis of Dietary Fiber of 66 Korean Varieties of Sprout Beans and Bean Sprouts

  • Lee, Kyung-A;Cho, Young-Ae;Hwang, Young-Hyun;Lee, Hye-Sung
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.173-178
    • /
    • 2003
  • The present study was conducted to determine a high-fiber variety of sprout bean and bean sprout. Sixty-six varieties of Korean sprout beans and thirty varieties of Korean bean sprouts were analyzed for their total dietary fiber (TDF) using a combination of enzymatic and gravimetric methods adopted by AOAC. The average and range of the TDF contents of the 66 varieties of sprout beans were 21.73$\pm$2.43% and 16.60~29.2% (dry basis), respectively. The top five types of sprout beans with high TDF anions the 66 samples were KLG10658 (29.2%), Dawonkong (28.46%), Sohokong (25.66%), Moohankong (25.465%) and Samnamkong (24.94%). The mean TDF content of sprout beans was relatively high in the variety with yellow seed coat color and a smaller seed size (<15 g/100 seeds) than the ones with other colors and of medium or large seed size. The average and range of the TDF content of the 30 varieties of bean sprouts were 24.48$\pm$3.9% and 18.3~33.38%, respectively. Dawonkong sprouts showed the highest TDF content (33.38%). The average TDF content of bean sprouts was 1.16 times higher than that of the corresponding seed beans. The TDF content of bean sprouts did not significantly change during the days of culture. The TDF content in the different parts of the bean sprout were high in the order of roots, hypocotyl and cotyledon.

Effect of Processing Method on Change of Water Soluble Dietary Fiber of Fagopyrum tataricum

  • Kim, Dong-Eun;Lee, Beom-Goo;Park, Cheol-Ho;Kang, Wie-Soo
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.70-76
    • /
    • 2005
  • Seed, stem and sprout of F. tataricum were separately milled using the ultra fine mill under the same condition to investigate the effect of roasting or extruding on the particle size, microstructure and water solubility of dietary fiber. The mean particle size of MR (roasting) is increased in stem and sprout, and that of ME (extruding) is increased in seed, compared to that of control. The microscopic views of seed show that control has the spherical shape but ME the larger and irregular shape, and those of stem and sprout show that control has the needle like shape but ME more rounded shape. Water solubility index of ME is much higher than that of control or MR in seed, stem and sprout. It shows that seed, stem and sprout are damaged more in extruding than in roasting, and the starch and cell wall structure must be destroyed to change the water insoluble dietary fiber into the water soluble dietary fiber.

  • PDF

Changes in Chemical Compositions of Pumpkin(Cucurbita moschata DUCH.) Seed Sprouts (호박(Cucurbita moschata DUCH.)종실의 발아 성장 과정 중 성분 변화)

  • 이병진;장희순;이규희;오만진
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.527-533
    • /
    • 2003
  • This study was performed for increasing the consumption and developing the function of pumpkin(Cucurbita moschata DUCH.) seed. The changes of the contents of general chemical compositions, fatty acids, amino acids, ascorbic acid and ${\beta}$-carotene during sprouting were analyzed. Also, the bitter taste, which was produced during sprouting, were purified by using thin layer chromatography and preparative high pressure liquid chromatography. The purified bitter compound was identified by mass spectrum and nuclear magnetic resonance($^1$H '||'&'||' $\^$13/C-NMR). Weight of pumpkin seed sprout was increased to 348.4% and the length of stem was dramatically increased at 8 days. In each head and stem parts of the pumpkin seed sprout, the contents of protein and lipid were decreased, however, the contents of fiber, ash and soluble inorganic nitrogen were increased. The fatty acids of the pumpkin seed sprout were mainly represented as linoleic acid, oleic acid, palmitic acid and stearic acid. During sprouting, palmitic acid was gradually increased, reversely, linoleic acid was gradually decreased. The general amino acids of head part in the pumpkin seed sprout grown at 23$^{\circ}C$ during 8 days were orderly more contained glycine, alanine, arginine, cystein and proline. Those of free amino acids were orderly more contained arginine, threonine, alanine and glutamine. The contents of L-ascorbic acid and ${\beta}$-camtene of the pumpkin seed sprout were gradually increased with increasing sprouting days. The bitter taste material of head part of the pumpkin seed sprout was detected at Rf value 0.72 on silicagel TLC plate and separuted as one peak by HPLC. The chemical structure of the puified bitter compound was identified as a cucurbitacin glycoside by MS and NMR. The content of bitter compound at 8 days was contained 42.2 mg per 1kg sprout head.

Investigation of soybean sprout rot and the elimination of improper seeds for quality control on soybean seedlots

  • Lee, Jung Han;Kwak, Youn-Sig
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Soybean sprouts have been a considered a nutrient-rich vegetable for hundreds of years. To evaluate the seedlot quality of soybean sprouts grown, and to evaluate a method for reducing the presence of improper seeds in soybean seedlots, microbes associated with soybean sprout rot were isolated from samples collected. Morphological characteristics and gas chromatography profiles of the cultured fungal and bacterial strains were identified. Eight types of improper seeds were identified: purple stain(Ps), black rot(Br), seed coat black spot(Cb), wrinkled seed(Ws), brown hilum(Bh), seed coat fracture(Cf), unripe seed(Us), and brown seed coat(Bc). The improper seeds were also dipped into 15%, 20%, and 25% NaCl solutions, as well as a saturated solution of NaCl, for 1min. As the NaCl concentration increased, the number of floating improper seeds increased as well. The highest floating rates were observed for the Cf seeds.

Comparison of the Chemical Components of Buckwheat Seed and Sprout (메밀종자와 메밀나물의 화학적 성분비교)

  • Kim, Youn-Sun;Kim, Jong-Goon;Lee, Young-Sook;Kang, Il-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • The chemical components of buckwheat seed and sprout were compared for predicting the usefulness of buckwheat sprout as food materials. The buckwheat sprout was harvested and lyophilized after germination for 7 days. Crude protein, lipid and ash contents of buckwheat sprout were 20.8, 1.3 and 2.6% in dry basis, respectively. Major amino acids of buckwheat sprout were glutamic acid (2,764 mg/l00 g) and aspartic acid (1,698 mg/l00 g). The contents of tryptophan, alanine, tyrosine and histidine of buckwheat sprout were about 1.7 to 1.9 times higher than those of buckwheat seed. Major fatty acids of buckwheat sprout were linoleic acid (45.9%) and oleic acid (18.4%). The contents of stearic acid (18:0) and oleic acid (18:1) were decreased by about 21% and 50%, whereas those of linoleic acid (18:2) and linolenic acid (18:3) were increased by 1.3 and 5.4 times, respectively after germination for 7 days. The mineral contents of buckwheat sprout were 152.0 mg/l00 g for Ca, 9.9 mg/l00 g for Zn, 485.0 mg/l00 g for Mg and 5.4 mg/l00 g for Fe. Vitamin A, C and E contents of buckwheat sprout were 1,180 IU/100 g, 203 mg/l00 g and 32.1 mg/l00 g in dry basis, respectively. Especially, the content of $\alpha$ -tocopherol was increased by 27.5 times as compared to that of buckwheat seed. The rutin content of buckwheat sprout was 343.67 mg/l00 g, which was about 18 times higher than that of buckwheat seed.