• Title/Summary/Keyword: seed potatoes

Search Result 48, Processing Time 0.023 seconds

Serological Identification of Potato Viruses in Korea (감자 바이러스의 혈청학적 동정에 관한 연구)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.13 no.1 s.18
    • /
    • pp.41-45
    • /
    • 1974
  • A total of 230 apparently healthy looking potato stocks and 80 potato stocks with symptoms of virus infection were collected from various seed potato farms in Korea and the incidence of potato virus X (PVX), potato virus S (PVS), potato virus M (PVM) and potato virus Y (PVY) was determined by serological microprecipitin tests. Results obtained are as follows. 1. Serological microprecipitin test retreated the presence of PVX, PVS, PVM and PVY in a number of potato stocks grown for the production of seed potatoes in Korea. 2. The occurrence of potato virus M is reported here for the first time in Korea with experimental evidence. 3. Practically $100\%$ (290 stocks, of the apparently healthy looking potato stocks were demonstrated to be infected with both PVX and PVS. The infection percentages of potato stocks with combination of PVX, PVS, PVM and PVY were as follows. PVX+PVS+PVM:$10.3\%$, PVX+PVS+PVY:$4.5\%$, PVX+PVS+PVM+PVY:$1.03\%$ 4. Irish Cobbler and Shimabara, which are the two major potato varieties in Korea, appear to be symptomless carriers of PVX and PVS. However, when these varieties were infected additionally with PVY, usually severe symptoms resulted. 5. Serological microprecipitin technique appears to be highly suitable for early, quick and reliable diagnosis of PVX, PVS PVM and PVY. It is particularly suited for large scale testing of seed potato stocks for the presence of viruses mentioned above.

  • PDF

Superficial Tuber Necrosis in Potato Cultivar 'Haryeong' Caused by Potato virus Y (Potato virus Y에 의한 하령 감자의 괴경 괴저증상)

  • Lee, Young-Gyu;Kim, Jeom-Soon;Kim, Ju-Il;Park, Young-Eun
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • Potato cv. 'Haryeong' was bred with high solids, resistance to late blight and good culinary quality. It has been registered as new potato variety in 2005. Tuber necrosis symptoms such as severe superficial necrosis, raised surface lesions and ringed necrotic areas were found in tubers of 'Haryeong' during storage of seed potatoes in 2010. Potato virus Y (PVY) was detected from these symptomatic tubers by the analysis of RT-PCR using a primer set specific to coat protein gene of PVY. The nucleotide sequence of RT-PCR product ($PVY^{Hkr}$) was determined and compared to those of other strains, such as $PVY^{Kor}$, $PVY^N$, $PVY^{NTN}$, $PVY^O$, and $PVY^C$ registered in GeneBank. The result showed that $PVY^{Hkr}$ was exactly the same as $PVY^{Kor}$, Korean isolate reported in 2005, except two nucleotides. To verify the PVY was responsible for the tuber necrosis symptoms shown in the tubers of 'Haryeong', a bioassay was done using two viruses (PVY and Potato leafroll virus) and five potato cultivars ('Haryeong', 'Superior', 'Atlantic', 'Dejima', and 'Chubaek'). As expected, the same necrosis symptom appeared in tubers of 'Haryeong' infected with PVY only during the storage period.

Nutritional Evaluation, Stability of Cereals and Sanitation Status of Processing Utensils and Environments Based on Hygiene Education (위생교육에 따른 선식 제조기구와 작업장의 위생상태변화 및 일부 선식제품의 안정성과 영양적 평가)

  • 김은미;김현숙
    • Korean Journal of Community Nutrition
    • /
    • v.7 no.6
    • /
    • pp.833-843
    • /
    • 2002
  • This study was carried out to investigate the effect of hygiene education on the microbiological changes of processing utensils and the environmental in the manufacture of cereals and to evaluate the Cd, Pb contents and nutrient compositions of 11 cereals. The result of microbiological evaluation was that fungi, coliforms and staphylococcus species were detected in employees, on equipment, utensils and environments in the first inspection. Fungi were detected in most of the cereals, staphylococcus species were detected in soybeans, perilla seeds and sea tangle How, and bacillus cereus was detected in sorghum and black sesame seeds. The water content of rice, barley, glutinous rice, brown rice and carrot flour in packaged products, and in carrot flour, angelica keiskei, carrot, sea mustard and potato in bulk products was in excess of 8.0%. The Pb content of cereals was 0.14-0.51 mg/kg and Cd was not found. The acid value of Job s tears flour and black sesame seed flour was higher than 5.0 mg/g oil. Cereals were manufactured from 41 different cereals and grains, legumes, seeds and nuts, vegetables, potatoes, seaweeds, fruits, glucose and salt. The average content of cereals and grains, legumes, and seeds and nuts in cereals was 75.75%, 16.19% and 4.93%, respectively. The mean nutrient content per 100 g of cereals was calories 365.8kcal, protein 13.3 g, fats 5.9 g, carbohydrates 63.4 g, Ca 91.8 mg, p 269.9 mg, Fe 3.15 mg, Na 76.2 g, K 421.8 mg, Zn 2.33 mg, Vit. A 12.5 R.E., Vit. B$_1$0.23 mg, Vit. $B_2$ 0.16 mg, Vit. $B_6$ 0.46 mg, Niacin 3.5 mg, Vit. C 1.36 mg, folic acid 62.3 $\mu$g and Vit. E 1.24 mg. When nutrients value of 48 g of cereals and 200 $m\ell$l of milk was compared to 1/3 of the RDA, the values were below than 60% of 1/3 of the RDA except Na, K, Vitamin $B_1$ and C contents. The average carbohydrate : protein : fat ratio of energy intake was 54.27 : 17.45 : 28.28, respectively. Therefore, a training program consisting of the education of the staff in surveillance and standard operating procedures, the elimination of dangerous procedures, sanitation checklist, the implementation of Preparation methods and standard recipes for cereals is required.

Aphid Over-wintering Host Plants and Seasonal Transmission Rates of Potato Leafroll Virus by Aphids in the Highland Fields of Korea (고랭지 감자밭의 진딧물 월동기주 및 감자잎말림바이러스(PLRV) 보독진딧물의 시기별 변동)

  • Kwon, Min;Kim, Juil;Kim, Changseok;Lee, Yeonggyu
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • Aphid is a typical vector that transfers various kinds of viruses to potatoes. Therefore, it is very important to control aphids moving into potato fields. We investigated the seasonal movement pattern of aphids and its virus transmission rates mainly in the three seed potato production regions at highland in Gangwon-do, Korea. In addition, we identified the aphid species with over-wintering eggs collected from barks or twigs of total 57 tree species around potato fields in winter season. The peak time of summer and winter migration of aphid was at the mid-June and the early October, respectively. A 2.8% of total aphid trapped in yellow water-pan trap was turned out PLRV-borne, and the virus transmission rate was 15.4% by Myzus persicae and 9.1% by Macrosiphum euphorbiae. PLRV-borne aphids started to flow in from the late May, and virus transmission rate of aphid trapped in mid-June was the highest with 10.4%. Totally 14 species of aphid eggs wintered in the 17 species of trees including Acer pictum subsp. mono and Acer pseudosieboldianum at the 11 sites. In particular, because it is not certain that Betula platyphylla var. japonica and Yamatocallis hirayamae do transmit potato virus, but they over-wintered in host plants distributed over a wide area, further research on transmission ability is necessary.

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF

Genotype x Environment Interaction and Stability Analysis for Potato Performance and Glycoalkaloid Content in Korea (유전형과 재배환경의 상호작용에 따른 감자 수량성과 글리코알카로이드 함량 변화)

  • Kim, Su Jeong;Sohn, Hwang Bae;Lee, Yu Young;Park, Min Woo;Chang, Dong Chil;Kwon, Oh Keun;Park, Young Eun;Hong, Su Young;Suh, Jong Taek;Nam, Jung Hwan;Jeong, Jin Cheol;Koo, Bon Cheol;Kim, Yul Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.4
    • /
    • pp.333-345
    • /
    • 2017
  • The potato tuber is known as a rich source of essential nutrients, used throughout the world. Although potato-breeding programs share some priorities, the major objective is to increase the genetic potential for yield through breeding or to eliminate hazards that reduce yield. Glycoalkaloids, which are considered a serious hazard to human health, accumulate naturally in potatoes during growth, harvesting, transportation, and storage. Here, we used the AMMI (additive main effects and multiplicative interaction) and GGE (Genotype main effect and genotype by environment interaction) biplot model, to evaluate tuber yield stability and glycoalkaloid content in six potato cultivars across three locations during 2012/2013. The environment on tuber yield had the greatest effect and accounted for 33.0% of the total sum squares; genotypes accounted for 3.8% and $G{\times}E$ interaction accounted for 11.1% which is the nest highest contribution. Conversely, the genotype on glycoalkaloid had the greatest effect and accounted for 82.4% of the total sum squares), whereas environment and $G{\times}E$ effects on this trait accounted for only 0.4% and 3.7%, respectively. Furthermore, potato genotype 'Superior', which covers most of the cultivated area, exhibited high yield performance with stability. 'Goun', which showed lower glycoalkaloid content, was the most suitable and desirable genotype. Results showed that, while tuber yield was more affected by the environment, glycoalkaloid content was more dependent on genotype. Further, the use of the AMMI and GGE biplot model generated more interactive visuals, facilitated the identification of superior genotypes, and suggested decisions on a variety of recommendations for specific environments.

Effects of Altitude and Planting Time on Tuber Bulking of Potato (감자 고랭지 재배 시 표고 및 파종시기에 따른 괴경의 비대반응)

  • Kim, Chung-Guk;Ok, Hyun-Chung;Jeong, Jin-Chol;Hur, On-Sook;Seo, Jong-Ho;Jeong, Kwang-Ho;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.418-423
    • /
    • 2012
  • Field experiments were carried out to improve the cultural practice of potato by analysing its tuberization patterns. Tuberization patterns affected by different altitudes was analyzed at two potato cultivation regions, Jinbu (600 m) and Daegwallyung (800 m) using two potato cultivars, 'Superior' and 'Atlantic'. To analyse tuberization patterns affected by different planting time, seed potatoes were planted at every 10 days from April 19 to May 19 in Daegwallyung. Total dry weight was greater in plant grown at the altitude of 800 m than 600 m during the entire growth period and the highest increase was observed at the early growth period, July 6, comparing to other growth period. The total dry weight was the greatest at 110~112 days after planting (DAP) at the altitude of 800 m and 108~111 DAP at 600 m. There was no significant differences between altitudes and between cultivars. Tuber dry weight per plant at the altitude of 600 m was lower than 800 m on July 6 (58 DAP), but it increased rapidly from July 21 (73 DAP). At both altitudes, the increase of tuber dry weight per plant from July 6 to August 8 was higher than the other growth period. The time of growth period at which tuber dry weight per plant was the highest was similar at both altitudes that was 118~125 DAP at the altitude 800 m and 118~124 DAP at the altitude 600 m. Dry weight per tuber at the altitude 800m was higher than 600 m due to the number of tubers per plant. A higher increase of crop growth rate (CGR) was shown at the altitude 600 m on July 6 (58 DAP), comparing to at 800 m. The highest tuber dry weight per plant of each cultivar was shown when the planting time was April 29 for 'Superior' and was April 19 for 'Atlantic'. Both the tuber dry weight of plant and the total dry weight were lower at a later planting time. Dry weight per tuber increased quickly during the period between June 30 to August 8. Tuberization period was shortened as the planting time was delayed.

Development of a Nutrient Solution for Potato (Solanum tuberosum L.) Seed Tuber Production in a Closed Hydroponic System (수경재배용 감자 배양액 개발)

  • Chang, Dong-Chil;Kim, Sung-Yeul;Shin, Kwan-Yong;Cho, Young-Ryul;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.18 no.3
    • /
    • pp.334-341
    • /
    • 2000
  • To develop a nutrient solution for a closed hydroponic system in potato (Solanum tuberosum L.) 'Atlantic' and 'Superior' potatoes were grown with the nutrient solutions whose strengths were 0.25, 0.5, 1.0, and 1.5 of the concentration of the nutrient solution developed by the National Horticultural Experiment Station in Japan. The best results in potato growth and yield were obtained with 0.5 and 1.0 strength nutrient solutions, and nutrient compositions for potato were determined based on the 1.0 strength nutrient solution; $14.4me{\cdot}L^{-1}\;N,\;4.2me{\cdot}L^{-1}\;P,\;7.5me{\cdot}L^{-1}\;K,\;5.5me{\cdot}L^{-1}\;Ca$, and $3.5me{\cdot}L^{-1}\;Mg$ for stolon growth stage and $14.8me{\cdot}L^{-1}\;N,\;4.0me{\cdot}L^{-1}\;P,\;8.5me{\cdot}L^{-1}\;K,\;6.5me{\cdot}L^{-1}\;Ca$, and $3.0me{\cdot}L^{-1}\;Mg$ for tuber growth stage. To examine the suitability of the nutrient solutions developed for potato, the strengths of 1.0 (PS 1.0S), 0.75 (PS 0.75S), or 0.5 (PS 0.5S) were compared with half-strength of Japanese Horticultural Experiment Station' solution (JH 0.5S). Changes in pH, EC, and mineral concentrations in nutrient solutions depended more on solution strength and growth stage than on the type of nutrient solution. However, most elements in solution remained constant with plant age in PS 0.75S solution during stolon growth stage, and in PS 0.5S solution during tuber growth stage. The greatest growth and tuber yield was obtained in the standard strength solution (PS 1.0S), and potato solution developed in this experiment was recommended for hydroponic culture of potato in a closed system.

  • PDF