• Title/Summary/Keyword: seed industry

Search Result 308, Processing Time 0.03 seconds

The comparative gene expression concern to the seed pigmentation in maize (Zea mays L.)

  • Sa, Kyu Jin;Choi, Ik-Young;Lee, Ju Kyong
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.29.1-29.11
    • /
    • 2020
  • Maize seed pigmentation is one of the important issue to develop maize seed breeding. The differently gene expression was characterized and compared for three inbred lines, such as the pigment accumulated seed (CM22) and non-pigmented seed (CM5 and CM19) at 10 days after pollination. We obtained a total of 63,870, 82,496, and 54,555 contigs by de novo assembly to identify gene expression in the CM22, CM5, and CM19, respectably. In differentially expressed gene analysis, it was revealed that 7,044 genes were differentially expressed by at least two-fold, with 4,067 upregulated in colored maize inbred lines and 2,977 upregulated in colorless maize inbred lines. Of them,18 genes were included to the anthocyanin biosynthesis pathways, while 15 genes were upregulated in both CM22/5 and CM22/19. Additionally, 37 genes were detected in the metabolic pathway concern to the seed pigmentation by BINs analysis using MAPMAN software. Finally, these differently expressed genes may aid in the research on seed pigmentation in maize breeding programs.

Survey on current status of vegetable seed markets of Guangdong and Yunnan provinces in China for the development of domestic vegetable seed industry (국내 채소 종자산업 활성화를 위한 중국 광동성 및 운남성 채소 종자시장 현황 조사)

  • Kwak, Jung-Ho;Yoon, Moo Kyoung;Park, Suhyung;Kim, Dae-Young;Cheong, Seung-Ryong;Shin, Hyun-Ho;Lee, Sang-Kil;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.491-496
    • /
    • 2012
  • Vegetable seeds are one of the most important key factors to determine the way of vegetable's production, distribution, processing and storage. Unfortunately, because of international exchange crisis in 1997, the most of main Korean seed companies were merged into foreign capitals. Currently, many domestic seed companies are incapable of their own survey and development of vegetable seed markets in foreign countries. To provide valuable seed market information for these companies, China, especially Yunnan and Guangdong provinces in China, was selected. Since China is one of the major vegetable seed importers. Also, Yunnan and Guangdong provinces are the most promising targets to export Korean vegetable seeds. The current status of vegetable production in China was analyzed with consideration of Yunnan and Guangdong provinces. The contents of survey and analysis are covering major vegetable crops' cultivation area, farm number, cultivation type, production amount, market price, farm income, packaging method, distribution type and amount of seed consumption. And particularly, major horticultural characteristics of leading varieties were presented to assist the development of exportable varieties of domestic seed companies. We assume the results of this study would be practically usable for the development of exportable varieties.

Effect of osmotic potential on germination of tomato seed

  • Kim, Min Geun;Park, Sunyeob;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.214-214
    • /
    • 2017
  • Seeds of Tomato (Lycopersicon esculentum Mill.) have demanded high quality because of their high cost of seed. The optimization of the seed priming techniques that have positive effect on fast and uniform germination becomes important at the commercial level. Several factors such as solution composition, osmotic potential, and treatment duration affect seed priming response. In this study, osmotic potentials of priming solution and germination characteristics of primed seed were investigated to clarify the effects different inorganic salt types and the duration. Tomato seeds were primed in osmotic solutions that were osmotic potential ranged -1.54 to -0.45 MPa in an aerated solution of PEG 8000 (17%, 22%, 27%), and inorganic salt solution of $KNO_3$, $Na_2SO_4$, and $K_2SO_4$ (100, 200, 300mM). The seeds were treated at $20^{\circ}C$ for 2, 4, and 6 days. After each treatment, the seeds were dried to moisture content ranged 5-8% at $25^{\circ}C$. Four replications of 25 seeds per each treatments were placed in 10-cm petri dishes containing two filter papers and 3 ml of $dH_2O$ and incubated at $20^{\circ}C/30^{\circ}C$ and $15^{\circ}C$ and seedlings evaluated for abnormality after 14 days of incubation. Seed water potential (${\psi}$) was correlated with water potential of priming solution ($r^2=0.86$). Seeds primed in 100mM $KNO_3$ resulted the highest germination rate (GR, $63.9 %{\cdot}day^{-1}$) and lowest mean germination time (MGT, 2.0 days) comparing to untreated control ($23.9%{\cdot}day^{-1}$ of germination rate and 4.1 days of MGT) at $20/30^{\circ}C$, even though 96% of germination percentage were not different. Seeds primed in 100mM $KNO_3$ (${\psi}=-0.45MPa$) for 4 days showed ${\psi}=-0.38MPa$. Priming in $Na_2SO_4$, $K_2SO_4$, and PEG solution for 6 days improved MGT and GR, but not significantly than 4 days of treatment. Additionally, stepwise osmotic solution treatment with 100mM and 300mM concentration for 6 day did not showed differences with single treatment. In relation to osmotic potentials, identical osmotic potential in different inorganic salt solution showed different effect on germination characteristics.

  • PDF

Anti-Inflammatory Activity of Carthamus tinctorious Seed Extracts in Raw 264.7 cells (대식세포 내에서의 홍화자 추출물의 항염증 활성)

  • Kim, Dong-Hee;Hwang, Eun-Young;Son, Jun-Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • The objective of this study was to evaluate the anti-inflammation effect of extract of Carthamus tinctorious seed, on skin obtained from Gyeong buk, Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% ethanol extracted of Carthamus tinctorious seed and further cultured for an appropriated time after the addition of lipopolyssacharide (LPS). During the entire experimental period, 5, 10, 25 and 50 ${\mu}g/ml$ of Carthamus tinctorious seed showed no cytotoxicity. In these concentrations, ethyl acetate layer of ethanol extracted Carthamus tinctorius seed (CT-E/E) inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2). At a 50 ${\mu}g/ml$ level of CT-E/E, $PGE_2$, iNOS and COX-2 inhibition activity were shown 60%, 38%, and 42%, respectively. In addition, CT-E/E reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6. These results suggest that Carthamus tinctorious seed extracts may be a potential anti-inflammatory therapeutic agent due to the significant effects on inflammatory factors.

Modified Drum Priming and Exogenous Application of 24-Epibrassinolide (24-EBL) for Enhancing Germination under High Temperature Condition in Lettuce Seeds

  • Kang, Won Sik;Kim, Min Geun;Kim, Du Hyun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.86-86
    • /
    • 2018
  • This study was conducted to investigate the effects of modified drum priming and 24-Epibrassinolide (24-EBL) treatment to improve the seed quality for export. 40, 50 and 60% seed moisture content (SMC) of hydrated seeds were incubated for 16 and 24 h in a container with a relative humidity of 99% at 26 rpm for a modified drum priming treatment. The treated seeds were sown at $20^{\circ}C$ and $30^{\circ}C$ (12/12h, light/dark) with four replications of 25 seeds on pleated paper. The seeds were hydrated with water or 24-EBL solutions of $10^{-7}$, $10^{-8}$ and $10^{-9}M$, respectively. The germination of the modified drum primed seeds (24 h incubation after 60% SMC hydration) improved to 1.6 days mean germination time (MGT) and $46%{\cdot}day^{-1}$ germination rate (GR), while the untreated seeds showed 2.1 days MGT and $28%{\cdot}day^{-1}$ GR. The modified drum priming (60% SMC and 24 h incubation with $10^{-9}M$ 24-EBL) showed improved results in MGT (1.8 days) and GR (55%) at $20^{\circ}C$, whereas untreated seeds showed 2.3 days MGT and 44% GR. Under $30^{\circ}C$, germination of modified drum primed seeds was significantly improved in GP (80%), GR ($31%{\cdot}day^{-1}$), HS (55%) and MGT (3.3 days), however, untreated seeds showed decreased GP (27%), GR ($22%{\cdot}day^{-1}$), HS (55%) and MGT (4.8 days). This study showed that the germination of lettuce seeds is enhanced by 24 h drum incubation with 24-EBL and this method can be used effectively to achieve the benefits of early germination and uniform seedling development. In addition, these treatments circumvent thermo-dormancy of lettuce seed and have a possibility of high-quality and environment-friendly seed processing.

  • PDF

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Nutritional value and antioxidant potential of lemon seed and sprout

  • Park, Yong-Sung;Dhungana, Sanjeev Kumar;Kim, Il-Doo;Shin, Dong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.627-631
    • /
    • 2020
  • High amounts of lemon seeds are discarded as by-products of processing industries. It is important to find some measures, whereby they could be used in value-added ways. Although few studies have been conducted on lemon seed oils, no study has been conducted on the nutrient content of lemon seed sprouts. The objective of this study was to investigate the nutritional value and antioxidant potential of lemon seeds and sprouts. The 1,1-diphenly-2-picrylhydrazyl radical-scavenging potential, total polyphenol, and total free amino acid content were higher in the sprouts than in the seeds. Similarly, the content of such mineral elements as Fe, Na, and Zn, increased with germination. However, salicylic acid and total mineral content were lower in the sprouts than in the seeds. The results indicate that lemon seeds and sprouts could be regarded as high-value materials in food and cosmetic industries.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.