• Title/Summary/Keyword: sediment removal

Search Result 178, Processing Time 0.03 seconds

Use of Sediment Trap to Control Sediment from Alpine Fields (침사구를 이용한 고랭지 유사방지 대책)

  • Choi, Joong-Dae;Choi, Ye-Hwan;Sim, Hyeuk-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.571-574
    • /
    • 2003
  • Three sediment traps were placed at the toe of sloping fields in the alpine belt of Korea and sediment removal efficiency was estimated. Soil texture of the site was sandy soil and 5 runoff and sediment events were observed during 2002. Sediment was largely affected by both the amount and intensity of rainfall. Especially, rainfall intensity seemed to have profound effect on sediment yield from sloping sandy fields. Sediment removal of the sediments ranged widely from 266 kg/ha to 16,974 kg/ha depending on tillage method, slope and slope length, and amount and intensity of rainfall. Sediment removal efficiency was estimated to be more than 98.8%. It was suggested that rational combination of sediment trap and drainage channel might well contribute to control sediment discharge from alpine sloping fields.

  • PDF

Removal of Cochlodinium polykrikoides using a novel material produced from sediment - A field study

  • Song, Young-Chae;Sivakumar, S.;Ko, Sung-Chung;Hwang, Eung-Ju;Jo, Q-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.200-201
    • /
    • 2007
  • The present study was conducted in three fields at Namhae to examine the removal efficiency of organic free, heavy metal immobilized sediment on Cochlodinium polykrikoidesand and on sea water quality. The present study results concluded that removal efficiency was depends on the initial number of red tide cells. There was no drastic change in the sea water quality after sediment spray. For the comparison of effectiveness of betonite, zeolite and lime were mixed with sediment did not show any marked difference in removal. Finally, the present study evaluated 50g/$m^{2}$ sediment is sufficient to remove 100% cells density, even though various environmental factors are interfering the mechanism.

  • PDF

Analysis of Hydraulic Characteristics by Sediment Protection Weir on Natural River Estuary (자연하도 하구부의 방사보에 의한 수리학적특성 해석)

  • Ahn, Seung-Seop;Choi, Yun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.51-60
    • /
    • 2001
  • This study examines the effects of removal of the sediment protection weir at Taehwa river mouth on hydraulic and around river environment considering the fact that the effects of the sediment protection weir which is installed to protect water level drop of Ulsan harbor caused by sediments according to flood in Taehwa river, Dong-chun, and so forth may add water quality contamination by flow stagnance in normal and drought period and accumulation of pollutants. The result is as follows. First, it is estimated from the examination of variation characteristics water depth and level for Taehwa river before and after removal of the sediment protection weir that about 0.01m of water depth down according to removal of the sediment protection weir occurs when low flow runs between the sediment protection weir which is located about 2.3km away from the estuary and Samho-gyo which is about 9.0km away from the sediment protection weir, and about 0.01~0.56m(directly upstream point of the sediment protection weir 0.56m, Myongchon-gyo 0.14m, Ulsan-gyo 0.03m, and Taehwa-gyo 0.02m) downs when design flood flows between the sediment protection weir and the upstream of Taehwa-gyo which is 10km away from the sediment protection weir. Therefore, it is thought that variation of hydraulic characteristics of water depth down and so on according to removal of the sediment protection weir is slight because water depth variation is only about 1cm between directly upstream point of the sediment protection weir and Samho-gyo. Next, it is estimated from the examination of variation characteristics of flow velocity for Taehwa river before and after removal of the sediment protection weir that about 0.0lm/s of flow velocity increase occurs between the directly upstream point of the sediment protection weir which is about 2.4km away from the estuary and the directly upstream point of Samho-gyo when low flow runs, and about 0.01~0.44m/s increases between the sediment protection weir and Samho-gyo when design flood flows. Therefore, riverbed erosion by the increased flow velocity is concerned but it is thought that the concern about riverbed erosion is not great because the mean velocity is about 0.07~1.36m/s when low flow runs, and about 1.02~2.41m/s when design flood flows for the sector which experiences the flow velocity variation.

  • PDF

A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

Effects of Sediment Removal on Water Quality, Phytoplankton Communities and Benthic Macroinvertebrate (퇴적물 제거가 수질과 식물플랑크톤, 저서성 대형무척추동물에 미치는 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Lee, Eun Jeong;Byeon, Myeong-Seop;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.301-307
    • /
    • 2018
  • This study investigated the effects of sediment removal on water quality and phytoplankton development by setting up mesocosms at Uiam Lake, South Korea, and analyzing the environmental parameters and phytoplankton communities between June and October 2015. The comparison between testbed without sediment removal (TB-1) and testbed after sediment removal (TB-2) gave similar values for water temperature, pH, dissolved oxygen (DO), and electrical conductivity. Nevertheless, the average electrical conductivities of the two testbeds were $139{\mu}S/cm$ and $135{\mu}S/cm$, which were lower than the value obtained from the external control point (TB-con; $154{\mu}S/cm$). The small difference in total phosphorus (TP) and total nitrogen (TN) concentrations between the two testbeds implied that sediment removal did not greatly reduce nutrients; however, the phytoplankton cell count had decreased by approximately 37 % in TB-2 (average 1,663 cells/mL) compared to TB-1 (average 2,625 cells/mL). Compared to TB-con, the phosphorus and nitrogen concentrations of the two testbeds had decreased by 39 % and 30 %, respectively, whereas the phytoplankton abundance had decreased by up to 73 %, perhaps because of the blocked inflow of nutrients and the stabilized body of water caused by the installation of the mesocosm. The concentration of geosmin was lower in testbeds than in the external point, because installation of the structures had reduced the cyanobacteria biomass.

The Study of Removal of Organic Matter by the Rockworm, Marphysa sanguinea (바위털갯지렁이, Marphysa sanguinea에 의한 유기물 제거에 관한 연구)

  • Baek, Ami;Lee, Kyoung Seon
    • Journal of Marine Life Science
    • /
    • v.3 no.1
    • /
    • pp.38-43
    • /
    • 2018
  • The polychaetes are the dominant species in the benthic communities, and play an important role in improving the sediment quality through the action of ingesting organic materials. We evaluated the improvement ability of rockworm Marphysa sanguinea for the removal of organic matter. We used the three types of sediment (S1: coarse sand, S2: fine sand, S3: muddy sand), and analyzed TOC of seawater and sediment. Rockworm was effective in eliminating organic matter in the three types of sediment and the larger the particle, the higher the removal rate. Removal ability of rockworm for organic matter in sediment were calculated with 3.9856 ppm g-1d-1 in coarse sand, 2.8021 ppm g-1d-1 in fine sand, and 28.1142 ppm g-1d-1 in muddy sand. The results show that rockworm contributes to the removal of organic matter in the various sediment types.

An Optimal Control Theory on Economic Benefits of Dam Management: A Case of Aswan High Dam in Egypt (최적제어 이론을 이용한 댐 토사관리방안 : 이집트 아스완 댐 사례)

  • Lee, Yoon;Kim, Dong-Yeub
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.41-55
    • /
    • 2010
  • This paper analyzes optimal watershed management focusing on reservoir-level sediment removal techniques. Although dams and reservoirs provide several benefits, sedimentation may reduce their storage capacity. As of today, the Aswan High Dam (AHD) in Egypt faces approximately 76% reduced life of the reservoir. Since the AHD is the major fresh water source in Egypt, sustainable use of this resource is extremely important. A model is developed to simultaneously determine optimal sediment removal strategies for upstream soil conservation efforts and reservoir-level sediment control. Two sediment removal techniques are considered: mechanical dredging and hydro-suction sediment removal system (HSRS). Moreover, different levels of upstream soil conservation efforts have introduced to control soil erosion, which is a major contributor of reservoir storage capacity reduction. We compare a baseline case, which implies no management alternative, to non-cooperative and social planners' solution. Our empirical results indicate that the socially optimal sediment removal technique is a mechanical dredging with unconstrained amount with providing a sustainable life of the reservoir. From the empirical results, we find that social welfare can be as high as $151.01 billion, and is sensitive to interest rates and agricultural soil loss.

  • PDF

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

Performance and flow field assessment of settling tanks using experimental and CFD modeling

  • Nouri, Alireza Zamani;Heydari, Mohammad Mehdi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.423-435
    • /
    • 2017
  • Settling Basins are one of the most important and popular methods for removal of suspended sediments irrigation and drainage networks or power canals taking off from an alluvial river and wastewater treatment plant. Improving the performance and so increasing sediment removal efficiency of settling basins by an alternative method is necessary. In the present work, the effect of baffle and its angle of attack with the flow (${\theta}$) on the sediment removal efficiency is investigated by conducting a series of experiments on a straight canal with 8 m length, 0.3 m width and 0.5 m height and 3 m length of basin equipped with an adjustable glass baffle. A numerical analysis has been carried out using ANSYS Fluent 3D software (a general purpose computational fluid dynamics simulation tool) for three Froude numbers from the experiments. The numerical and experimental results were found to match reasonably well.