• Title/Summary/Keyword: sediment removal

Search Result 179, Processing Time 0.021 seconds

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

Removal of Cochlodinium polykrikoides using the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물을 이용한 Cochlodinium polykrikoides 제거)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae;Ko, Seong-Jeong;Hwang, Eung-Ju;Jo, Q-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In the present study, experiments have been performed to investigate the possibility of removing Cochlodinium polykrikoides using the dredged sediment from a coastal fishery and then to derive the optimal conditions; the amount and particle size of dredged sediment besprinkled into water, the thermal treatment, the types and amounts of additives, and the depth profile of Cochlodinium polykrikoides. Results showed that the optimal amount of dredged sediment besprinkled into water was 6~10 g/L, and the removal efficiency of Cochlodinium polykrikoides after the reaction time for 60 min was 73~93%. Note that, in the real sea water, it is necessary to besprinkle 6~10 $kg/m^3$ of dry dredged sediment on a unit area (1 $m^2$). With decreasing particle size, Cochlodinium polykrikoides could be more efficiently removed. The removal efficiency was 93% with the dredged sediment smaller than 100 ${\mu}m$, whereas it was 51% with that of 100 ${\mu}m$ ${\mu}m$. Since most of dredged sediment (over 90%) was smaller than 100 ${\mu}m$, high efficiency could be obtained by besprinkling only the dredged sediment without pre-treatment. CaO was found to be an effective additive in promoting the removal efficiency (up to 99%). The optimal amount of additive was 5~10%, however, it was necessary to use as small amount of an additive as possible in order to avoid the sharp increase in pH. The removal efficiency increased with increasing depth profile of Cochlodinium polykrikoides. The removal efficiency was 83% at 5 cm depth, whereas it was 93% at 50 cm depth. In the sea water, red tide occurred within 3 m depth, and furthermore most Cochlodinium polykrikoides existed within 1 m depth. It was, therefore, expected that higher removal efficiency of Cochlodinium polykrikoides could be obtained when the dredged sediment was besprinkled into the sea water. The removal efficiency of Cochlodinium polykrikoides was up to 93% when the dredged sediment (<100 ${\mu}m$) was besprinkled into water at the ratio of 10 g/L. This result was comparable to that obtained with loess (90~97%). All the results in the present study indicated that the dredged sediment from a coastal fishery could be successfully used as a substitute of loess for removing the red tide alga.

Operation of CROM System and its Effects of on the Removal of Seston in a Eutrophic Reservoir Using a Native Freshwater Bivalve (Anodonta woodiana) in Korea. (담수산 이매패 펄조개를 이용한 흐름형 유기물 제어(CROM) 운영 - 퇴적물의 영향)

  • Kim, Baik-Ho;Baik, Soon-Ki;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.161-171
    • /
    • 2009
  • A 'continuous removal of organic matters (CROM) system' using a native freshwater bivalve in Korea Anodonta woordiana, was developed to determine its potential of controlling various sestons in eutrophic lake system, and to evaluate its effect on water quality improvement under consideration of sediment addition as habitat. We designed CROM experiments with four treatments: no mussels and no sediment (W, negative control), no mussels and sediment (WS, positive control), mussels and no sediment (WM), and mussels and sediment (WMS). The experiments were performed at the condition of 18${\sim}$25 L $h^{-1}$ of inflow, mussel density of 486.1 indiv. $m^{-2}$, and temperatures between 15 and $22^{\circ}C$ for 13 consecutive days. Physicochemical and biological parameters were measured at daily (10:00 am) intervals after the mussel addition. Results indicated that mussel stockings without addition of sediment effectively removed sestons (suspended solids and chlorophyll-a) at nearly same level over 80 percentage of the control during the study, while there were no differences in removal activities of sestons between with and without sediment (P>0.5). Therefore, it clearly suggests that CROM system using A. woordiana has a strong potential to control the seston in surface water of eutrophic lake.

Removal of Virus in Home Drinking Water Treatment Systems (가정용 정수시스템의 바이러스 제거)

  • 김영진;오남순;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.45-48
    • /
    • 2000
  • Reverse osmosis filtration(RO) system and ultrafiltration(UF) system are principally use for domestic home drinking water treatment systems. The object of this study is to make a comparison between two systems in terms of theirs abilities to remove RNA coilphage QB as an indicator of pathogenic enteroviruses. The virus removal ratio of RO system was 99.999%, which was higher than EPA virus treatment guideline(99.99%). In the course of filtration, removal ratios of sediment filter, pre-carbon filter, reverse osmosis membrane and post-carbon filter were 75.000%, 93.208%, 99.997% and 99.999%, repectively. In case of UF system, virus removal ratio was 99.708%. Removal ratios of sediment filter, pre-carbon filter, post-carbon filter and ultrafiltration membration membrane were 71.038%, 91.530%, 98.283% and 99.708%, respecively, in UF steps. Therefore, RO system is more effective than UF system in virus removal.

  • PDF

Analysis of Characteristics and Removal Efficiency of Road-deposited Sediment on Highway by Road Sweeping According to Particle Size Distribution (고속도로 노면퇴적물의 특성 및 도로청소에 의한 입도별 제거효율 분석)

  • Kang, Heeman;Kim, Hwang Hee;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.286-295
    • /
    • 2021
  • The removal efficiency of road-deposited sediment (SDR) by road sweeping was analyzed by performing particle size analysis before and after road sweeping at four highways during May to December 2019. The SDR accounted for the largest proportion in the range of 250 to 850 ㎛ and the degree of its proportion had an effect on the particle size distribution curve. The particle size distribution of the collected sediments showed a similar distribution at all sites. Below 75 ㎛, the removal efficiency of SDR showed a constant value around 40%, but above 75 ㎛, it increased as the particle size increased. The removal efficiency was 82-90% (average 86%) for gravel, 66-93% (average 79%) for coarse sand, 35-92% (average 64%) for fine sand, 29-69% (average 44%) for very fine sand, 19-58% (average 40%) for silt loading, 10-59% (average 40%) for TSP, 13-57% (average 40%) for PM10, and 15-61% (average 38%) for PM2.5. SDR removal efficiency showed an average of 69% for the four highways. It was found that if the amount of SDR was less than 100 g/m2, it was affected by the road surface condition and had a large regional deviation. As such, the amount of SDR and the removal efficiency increased. The fine particles, which have relatively low removal efficiency, contained a large amount of pollutants, which is an important factor in water and air pollution. Therefore, various measures to improve the removal efficiency of fine particles in SDR by road sweeping are needed.

Development and Application of ROADMOD for Analysis of Non-point Source Pollutions from Road: Analysis of Removal Efficiency of Sediment in Road by Sweeping (도로 비점오염 해석을 위한 ROADMOD개발 및 적용: 도로청소 효과 분석)

  • Kang, Heeman;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.103-113
    • /
    • 2021
  • In this study, an Excel-based model (ROADMOD) was developed to estimate pollutant loading from the road and evaluate BMPs. ROADMOD employs the Chezy-Manning equation and empirical expression for estimating surface runoff, and power function for pollutant buildup, and exponential function for pollutant washoff in SWMM. The results of model calibration for buildup and washoff using observed data revealed a good match between the simulation results and the observed data. The long-term surface runoff and sediment simulated by ROADMOD demonstrated a good match with those by SWMM with 2 ~ 14% of relative error. The shorter sweeping interval (within 8 days) remarkably decreased sediment loads from the road. It was found that the effect of reducing sediment loads from the road was greatly affected not only by the sweeping interval but also by sweeping on the day before a rainfall event. The 48% of removal efficiency of sediment loads from the road was achieved with 26 times of road sweeping per year when sweeping was performed on the day before the rainfall event. A 4-day sweeping interval showed similar removal efficiency (48%) with 96 times of sweeping per year. It is considered that the road sweeping on the day before a rainfall event could maximize the effect of reducing the non-point source pollution from the road with minimization of the number of road sweeping. So, the road sweeping on the day before a rainfall event can be considered as one of the useful and best management practices (BMPs) on road.

An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (2) - Sediment Distribution and Reduction Method in Reservoir (저수지 장기운영을 위한 퇴적토사의 효율적 관리(2) - 저수지 퇴사분포 및 저감방안)

  • Ahn, Jae Hyun;Jang, Su Hyung;Choi, Won Suk;Yoon, Yong Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1094-1100
    • /
    • 2006
  • In this study, the reservoir sediment reduction methods for long-term operation are proposed by the analysis of both sediment deposit characteristics and sediment reduction effect by each method. To that end, a flowchart for sediment analysis in reservoir is established and sediment deposit is simulated by SMS-SED2D model. The sediment reduction methods which are sediment passing (sluicing), flushing, trapping, bypassing and mechanical removal are used. From the simulation results, the effective method for sediment reduction is operation which is coupled by both sediment passing with sand gate and sediment trapping with debris dam. And If sediment flushing will be used once a year after 50 years, conservation storage can be secured until 100 years after dam construction.

Effect of Hydrochloric Acid Concentration on Removal Efficiency and Chemical Forms of Heavy Metals During Dredged Sediment Acid Washing (준설토 산세척 시 염산 농도가 중금속의 정화효율 및 존재형태에 미치는 영향)

  • Kim, Kibeum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • In this study, the effect of hydrochloric acid (HCl) concentrations on removal efficiency and chemical forms of heavy metals in dredged sediment during acid washing was investigated. The removal efficiencies of Zn, Cu, Pb, Ni and Cd by acid washing were 18.4-92.4%, 7.2-83.7%, 9.4-75%, 8.1-53.4% and 34.4-70.8%, respectively. Overall, the removal efficiencies of heavy metals were remarkably enhanced with the increase of the acid strength. However, the removal efficiencies for 0.5 and 1.0 M HCl were comparable, and both cases met the Korean soil contamination standard. Based on the sequential extraction results, concentration of the exchangeable fraction (F1), the most labile fraction, increased whereas concentrations of the other fractions decreased with increasing acid strength. Particularly, the carbonate (F2) and Fe/Mn oxides (F3) fractions drastically decreased by using 0.5 M or 1.0 M HCl. The current study results verified that acid washing could effectively reduce heavy metal concentrations and its potential mobility in dredged sediments. However, the study also found that acid washing may cause significant increase in bioavailable fraction of heavy metals, suggesting the need to evaluate the changes in chemical forms of heavy metals by acid washing when determining the acid strength to be applied.

Type Selection of Sediment Desilting Machines in Yellow River Irrigation System

  • Wang, Huazhong;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.257-262
    • /
    • 1996
  • Large amount of water is diverted annually for irrigation along the Yellow River. Owing to the tremendous sediment carried by the river , sediment deposits is an important problem in irrigation and drainage system. The sediment has to be taken out by machines from the irrigation system, otherwise water can not be available in the right place at the right time. In order to improve the sediment desilting efficiency, the sediments that settle in certain sites of a irrigation system must be removed by different desilting machines with special performance and working conditions. Those certain sites include : the diversion canal in the flood plain , the mouth of inlet, settling basin , irrigation and drainage system. In view of removal sediment above, the paper presents the ideas of type selection of desilting machines applied to certain sites. Proposals of making further improvement on performance for some desilting machines are also put forward.

  • PDF

Characteristics of Bed Profile Fluctuation According to Before & After Removal of the Sediment Protection Weir using HEC-6 model (HEC-6모형을 이용한 방사보 철거 전후에 따른 하상변동 특성)

  • Ahn, Seung-Seop;Lee, Soo-Sik;Choi, Yun-Young;Lee, Jeung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.93-102
    • /
    • 2001
  • In this study, the characteristics of river bed profile fluctuation are become possible to be used effectively in future estimation of Taehwa river general development plan through analysis and examination according to the effects of sediment protection weir located in the area of the estuary of Taehwa river's main channel using HEC-6 model. The flow conditions needed in analysis of the characteristics of river bed profile fluctuation refer the conditions of flow which secures 95 days in a year, flood flow, and design flood examined in the estimation of Taehwa river maintenance basic plan. First, in analysis result of river bed variation range, there is no significant variation in upstream section from Samho-gyo while there are the more active erosion and sedimentation as the more flow in downstream from Samho-gyo. Next, from the result of the capacity of sediment transfer, it is analyzed that sediment transfer capacity in the area of estuary of Taehwa river has no significant difference in before and after removal of the sediment protection weir when design flood flows while it is estimated that the more flow, the bigger sediment transfer capacity. Therefore, it is thought that the installation of a suitable hydraulic structure at the lowest point of Dong-chun tributary joins from the downstream of Taehwa river can be a good device to reduce the accumulation of sediments at the lowest point of Taehwa river considering the reduction plan of sediment inflow caused by removal of the sediment protection weir.

  • PDF