• Title/Summary/Keyword: sediment organic content

Search Result 207, Processing Time 0.027 seconds

Implication to Ecosystem Assessment from Distribution Pattern of Subtidal Macrobenthic Communities in Nakdong River Estuary (낙동강 하구 조하대 저서동물 군집분포에 따른 생태계 평가 적용)

  • Yoon, Kon-Tak;Park, Heung-Sik;Chang, Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2011
  • In this study, we investigated the effect of freshwater discharge on benthic community in Nakdong estuaries. The sediment was dominated by sand except few channels where heterogenetic sediment composition was observed. Sediment composition was rarely affected by freshwater discharge during the rainy season; however, organic content in the sediment slightly increased after the rainy season. Macrobenthic species composition differed spatially. For instance, species composition decreased after the rainy season near the barrage. Benthic community analysis revealed three groups, in which the first group was found between barrage and sand bars located at the mouth of estuary, the second group was observed outside the sand bars, and the last group was found in the channel. Opportunistic benthic species indicative of organic pollution, such as Sinocorophium sinensis, Magelona japonica, and Heteromastus filiformis, dominated areas close to the barrage. Organic pollution by freshwater discharge appears to be responsible for the emergence of opportunistic benthic species, and this influenced areas from the mouth of bay to sand bars. Outside the sand bars, freshwater discharge did not seem to have affected species composition.

Characterization of Water Pollution Load in an Artificial Lake Irregularly Receiving River Water (유지용수 공급형 인공저수지의 수질오염부하 특성 연구)

  • Cho, Woong-Hyun;Jeong, Byung-Gon;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The first objective of this study was to investigate water pollution status of Meejae Reservoir, Kunsan, irregularly receiving river water for agricultural and recreational purposes. The second objective of the study was to compare nutrient pollution loads of three nutrient sources: sediment leaching, non-point sources and the receiving water. Water analysis results showed that eutrophication was a concern especially in summer and the calculated TSI (secchi depth), TSI (chlorophyll-a), and TSI (TP) were 53.6, 57.7 and 56.7, respectively. Although there was no significant difference in seasonal mean values of sediment T-N, sediment T-P and sediment organic content, mean differences were found for sampling points. However, T-N and T-P sediment release flux showed seasonal mean differences, while showing no mean difference for sampling points. Water T-N data proportionally correlated with sediment T-N and sediment organic content data, while no statistical correlation was found for water T-P data. Comparison of nutrient loads calculated from three sources showed that the highest T-N load was occurred from the receiving (pumped) water while T-P loads of the receiving water and sediment release flux were similar. The first solution would be considered for the receiving water to improve the water quality of Meejae Reservoir. Reduction of nutrient flux from the sediment would be then tried as the second alternative solution.

Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats (비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;Jo, Won Gi;So, Yoon Hwan;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

Geochemical Characteristics of Intertidal Surface Sediments along the Southwestern Coast of Korea (한국 서해남부 조간대 표층 퇴적물의 지화학적 특성)

  • Hwang, Dong-Woon;Ryu, Sang-Ok;Kim, Seong-Gil;Choi, Ok-In;Kim, Seong-Soo;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.146-158
    • /
    • 2010
  • In order to evaluate the characteristics of sediments and pollution by organic matter and metallic elements in intertidal sediments along the southwestern coast of Korea, we measured various geochemical parameters, including the mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and metallic elements (Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, As), in intertidal surface sediments. The Mz of the surface sediments ranged from 2.1 to 8.3$\phi$, indicating that the surface sediments consist of various sedimentary facies, such as sand, slightly gravelly mud, sandy mud, and silt. The IL and COD in surface sediment ranged from 0.8 to 5.5% (mean $2.9\pm1.2%$) and from 3.9 to $13.8\;mgO_2/g{\cdot}dry$ (mean $8.5\pm2.6\;mgO_2/g{\cdot}dry$), respectively, which were lower than the values for surface sediment in areas near fish and shellfish farms or industrial complexes. No AVS was detected at any sampling station, despite various sedimentary facies. Most of metallic elements in surface sediments showed relatively good positive correlations with Mz and IL, which imply that the concentrations of metallic elements are mainly controlled by grain size and the organic matter content. The concentrations of metallic elements, except As, at some stations were considerably lower than those in the Sediment Quality Guideline (Effect Range Low, ERL) proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Similarly, the geoaccumulation index (Igeo) class indicated that pollution by metallic elements in intertidal surface sediment, except As, was moderate or non-existent. Our results imply that the intertidal surface sediments along the southwestern coast of Korea are not polluted by organic matter and metallic elements and are healthy for benthic organisms.

Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Hwang, In-Seo;Lee, Mi-Kyung;Kang, Ho;Kim, Eun-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.755-764
    • /
    • 2009
  • To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.

Sediment Oxygen Consumption Rate and Hydrogen Sulfide Release by Dissolved Oxygen Depletion in Hypoxic Area of the Gamak Bay, Korea (가막만 빈산소 해역의 퇴적물 산소소모율과 용존산소 고갈에 의한 황화수소 용출)

  • Lee, Taehee
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.293-302
    • /
    • 2015
  • This study investigated sediment oxygen consumption rates and geochemical characteristics of sediment in hypoxic area of the Gamak Bay based on the chamber experiments and geochemical analyses. The organic carbon contents of surface sediment in the Gamak Bay showed that the inner bay area has higher organic carbon content than those of the outer bay. They toward the outer bay, contents dropped off. The vertical profiles of calcium carbonate ($CaCO_3$) content at piston core sediment assumed that the hypoxia have been frequently occurred during past century in the northern inner bay. The benthic chamber experiments were conducted in February, May, August and November 2010, 2011 in the hypoxic area of the Gamak Bay. In the sediment incubation experiment with chamber at site C3 in the northern inner bay and site C17 in the southern outer bay, the sediment oxygen consumption rate ranged from $3.98mmol\;m^{-2}d^{-1}$ to $12.43mmol\;m^{-2}d^{-1}$ and $3.28mmol\;m^{-2}d^{-1}$ to $8.18mmol\;m^{-2}d^{-1}$, respectively. When the oxygen was completely depleted, the toxic hydrogen sulfide was released with $1.38mmol\;m^{-2}d^{-1}$ and $1.3mmol\;m^{-2}d^{-1}$, respectively.

Measurement of metals in sediment of the Geum-River and their correlation (금강수계 퇴적물 중 금속류 분석 및 상관성 조사)

  • Lee, Jun-Bae;Hong, Seoun-Hwa;Kim, Dong-Ho;Huh, In-Ae;Huh, Yu-Jeong;Khan, Jong-Beom;Oh, Da-Yeon;Kim, Keon-Young;Lee, Young-Joon;Lee, Soo-Hyung;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • An investigation of grain size, organic compounds and metal distribution in 23 sediment samples of the Geum-River basin (Korea) was conducted in two seasons of 2012 (dry season and rainy season). The samples of sediment were collected from the basin and investigated for concentrations of some metal and general indexes containing grain size. Concentrations of Pb, Zn, Cu, Cr, Ni, As, Cd, Hg, Al and Li have been determined by inductively coupled plasma spectrometer (ICP) and the sediments organic matter content was determined by the loss on ignition, and sediments were fractionated with three different nylon sieves. Correlation analysis was made for grain size, organic material and metal concentrations, and the Pearson correlation coefficients between their concentrations were determined. As a result, the higher metal concentrations were found in the period of the dry season than in another season. The metal concentrations showed high correlation with that of organic material (COD and TOC). Thereby, the high distribution of metal concentrations in sediment containing high organic compound is suggesting an interaction with organic matter.

Spatial and Temporal Variation of Characteristics and Pollution Assessment of Sediment in the Watersheds of Andong-Dam and Imha-Dam, Korea (안동댐과 임하댐 유역에서 퇴적물 특성 및 오염도의 시·공간적 변화)

  • Kim, Shin;Jeong, Hyun-Gi;Kim, Hyoung-Geun;Kim, Ju-Eon;Park, Su-Jeong;Kim, Yong-Seok;Yang, Deuk-Seok
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1085-1099
    • /
    • 2019
  • We investigated the spatial and temporal variation in characteristics and pollution assessment of sediments in the watersheds of Andong-Dam and Imha-Dam, in Korea. Surface sediments were collected from six sites once a year for three years (2015-2017), and analyzed for organic matter (water content, IL, COD, TOC, TN, and TP), grain size, and concentration of trace metals (Al, Li, Zn, Cr, Pb, Cu, Ni, and As). Organic matter generally tended to increase, and was higher in the Andong watershed compare to Imha watershed. Surface sediments were mainly composed of silt. Coarse sediments were mainly distributed at the site adjacent to Andong-Dam, and showed fining after coarsening. Fine sediment were mainly distributed at the site adjacent to Imha-Dam, and were gradually coarsening. Concentration of trace metals generally tended to increase, and was higher for sites in watershed of Andong watershed (PLI > 1) than for sites in Imha watershed (PLI < 1). Trace metals in the study area were considered to be affected by fine sediment (silt), and contamination of trace metals was somewhat affected by Pb, and greatly affected by Zn and As.

Chemical Forms and Release Potential of Heavy Metals from the Lime Treated Sediments (석회 처리에 의한 오염 퇴적물 내 중금속의 형태 변화 및 용출 가능성)

  • Park, Gil-Ok;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2008
  • Chemical forms and release potential of heavy metals were studied in the lime treated sediment of lake Chungcho. Chemical forms of heavy metals were analyzed using a sequential extraction method, and release potential of heavy metals was evaluated by the ratio of the content of labile forms to total metal one. Dominant form of Cd, Cu, Pb, and Zn in the untreated sediments was organic/sulfidic form that is stable in the reducing environment such as the bottom of Lake Chungcho. With liming of the sediment, the chemical forms of studied metals were greatly changed from organic/sulfidic form to adsorbed and reducible form, especially Cd and Cu to adsorbed and reducible form, but Pb and Zn to reducible form. It is believed that increase of unstable form of heavy metals in the sediments by liming was caused by the increase of pH of the pore water at the expense of organic/sulfidic form. Thus, we concluded that the liming approach currently used in the treatment of dredged sediments might cause the increase of labile form which is easily dissolved, and may increase the release of metals from the sediment into overlying water.

Distribution and Pollution of Heavy metals in Surface sediments from Nakdong River (낙동강 수계 표층 퇴적물의 중금속 분포와 오염도)

  • Kim, Shin;Kim, Jueon;Lee, Kwonchul;Lee, Kyuyeol;Jeon, Hyelyn;Yu, Jaejung;Lee, Injung;Ahn, Jungmin
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.969-980
    • /
    • 2015
  • In order to certificate the distribution and pollution of heavy metal of surface sediments in Nakdong River were collected and analyzed for grain size, water content, ignition loss and heavy metal content. Surface sediments mainly composed of sand(avg. 94.6%) and water content and ignition loss were 20.46%, 1.53% on average. Grain size were relatively fine and organic matter content were relatively high in the Hoichun and Sunakdonggang. Most of heavy metal content(Zn > Cr > Pb > Ni > Cu > Hg) in the Deokcheongang and Sunakdonggang were higher than the other streams. The Igeo were non polluted(less than 0) in all streams and the EF were relatively high in the small stream and PLI were non polluted(less than 1). In addition, organic matter, heavy metal content and pollution were highly correlation with grain size. Surface sediments in study area, heavy metal pollution of the Sunakdonggang were relatively high compared to the other stream but these results were not serious pollution that exceed the sediment pollution evaluation standard of river and lake in Korea and pollution levels adversely affected the majority of benthos were not.