• Title/Summary/Keyword: sediment grain size

Search Result 344, Processing Time 0.024 seconds

Manning's Roughness Factor in Alluvial Channels

  • Jun, Byong-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.49-60
    • /
    • 1990
  • Manning's roughness factor to flow in sand-bed channels may be divided into the grain roughness factor nd the form roughness factor. The grain roughness factor may be dedermined by using Keulegan's formula. By using available experimental data, it was found there is a unique relationship between the form roughness and the hydraulic radius to sediment particle size ratio for a given value of the Froude number. The form roughness and the bed form may be determined by using this unique relationship. The technique for engineering applications of the results appears to be quite simple.

  • PDF

Distribution Characteristics of Organic Matter and Heavy Metal of Sediment in Daecheon Port (대천항 퇴적물의 유기물 및 중금속 분포 특성)

  • Shin, Woo-Seok;Lim, Ji-Yoon;Yoon, Young-Gwan
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.43-51
    • /
    • 2018
  • In order to systematically and scientifically manage the organic and heavy metals against sediment at Daecheon Port, this study conducted particle composition, organic materials and heavy metals irradiation studies of sediments. Analysis of the grain size composition of sediments in the target study area showed the distribution characteristics of the mix of sand, silt and clay. That is, Station C (Stn. C) showed superior by fine-grained sediment, Station A and B (Stn. A and B) showed superior by coarse-grained sediment. The organic matter(COD, TOC, and IL) of Stn. C was appeared to be heavily polluted more than Stn. A and B. These data for the spatial properties in sediment showed that organic matter was related positively to the sediment silt-clay content. Also, in the case of heavy metals contamination in surface sediments, Stn. C was higher than Stn. A and B. Particularly, at the Stn. C, high organic matter concentration and C/N ratio value( >10) indicated that the sediment was composed highly of land-derived organic matter. From these results, it considered that the correlation analysis among to silt-clay, organic matter and heavy metal was found to have a good interrelationship.

The Physico-chemical Properties of Sediment, the Species Composition and Biomass of Benthic Diatoma in the Intertidal Zone of Kum River Estuary (錦江河口 潮間帶 低土의 物理化學的 特性, 低生硅藻의 種組成 및 生物量)

  • Kim, Joon-Ho;Kyung-Je Cho
    • The Korean Journal of Ecology
    • /
    • v.8 no.1
    • /
    • pp.21-29
    • /
    • 1985
  • The physico-chemical properties of sediment, the species composition and biomass of benthic diatoms were investigated in the intertidal zone of Kum river estuary, from July 1983 to May 1984. Sandflat sediment was more oligotrophic than mudflat one. The diatom composition was primarily associated with sediment grain size. The dominant epipelic diatoms belonged to the centric diatoms such as Paralia sulcata and Thalassiosira spp., while the epipsammic diatoms consisted mainly of Achnanthes haukiana and Amphora sabyii. Diatom flora of sandflat was more significantly diverse than that of mudflat. Mean yearly crop of sandflat diatoms was 2.8 times greater than that of mudflat diatoms and peaked at March reflecting the greater availability of ammonia.

  • PDF

SEDIMENT ENTRAINMENT DUE TO SHEAR FLOW (전단류에 의한 퇴적물 부상)

  • Kang, See Whan
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 1983
  • A series of experiments was performed to increase and make our puantitive understanding of the entrainuent and settling processes of fine-grained sediments, which are of critical importance to construct a predictive model of sediment experiments were performed in an annular flume. A rotating top produced a turbulent flow which in turn exerted and are shown to be dependent on the sediment concentration and the presence of clay minerals. The parameters on which entrainment strongly depends were identified to be the shear stress, water content (time ofter deposition), and the type of sediment (grain size and mineralogy).

  • PDF

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

A Study on Settling Properties of Cohesive Sediments in Shihwa Lake (시화호 점착성 퇴적물의 침강 특성에 관한 연구)

  • LEE YOUNG-JAE;LEE SANG-HWA;HWANG KYU-NAM;RYU HONG-RYUL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.42-48
    • /
    • 2005
  • The sediment of Shihwa Lake contains an abundant quantity of cohesive sediments. The transport processes of the cohesive sediments are complex and difficult to predict, quantitatively. The cohesive sediments are the primary reason for the pollution of the environment and water quality in the coastal region. In this study, a column test has been performed. In order to quantify the settling velocities of sediment from Shihwa Lake, an experiment was conducted using a specially designed 1.8m tall settling column. A series of settling tests and physico-chemical property tests on Shihwa Lake cohesive sediments has been conducted to investigate the correlation between settling properties and their physico-chemical properties, which are represented as grain size distribution, mineralogical composition, and percentage oj organic contents. Experimental results of physico-chemical property tests show that Shihwa Lake sediments are relatively large in average grain $size(74\mu m)$ contain very small organic $material(6\%)$, and are dominantly composed of Quarts, which has relatively low cohesion. Thus, Shihwa Lake sediments might be specified as those whose settling properties are more influenced by gravity than cohesion. It is concluded that the magnitude of settling velocities of muddy sediments can be quite different, regionally, and it implies that field or laboratory experiments for settling velocity measurement should be preceded over the numerical modeling of muddy sediment transport, in order to obtain the reliable prediction results for a given specific site.

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.

Spatial and Temporal Variation of Characteristics and Pollution Assessment of Sediment in the Watersheds of Andong-Dam and Imha-Dam, Korea (안동댐과 임하댐 유역에서 퇴적물 특성 및 오염도의 시·공간적 변화)

  • Kim, Shin;Jeong, Hyun-Gi;Kim, Hyoung-Geun;Kim, Ju-Eon;Park, Su-Jeong;Kim, Yong-Seok;Yang, Deuk-Seok
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1085-1099
    • /
    • 2019
  • We investigated the spatial and temporal variation in characteristics and pollution assessment of sediments in the watersheds of Andong-Dam and Imha-Dam, in Korea. Surface sediments were collected from six sites once a year for three years (2015-2017), and analyzed for organic matter (water content, IL, COD, TOC, TN, and TP), grain size, and concentration of trace metals (Al, Li, Zn, Cr, Pb, Cu, Ni, and As). Organic matter generally tended to increase, and was higher in the Andong watershed compare to Imha watershed. Surface sediments were mainly composed of silt. Coarse sediments were mainly distributed at the site adjacent to Andong-Dam, and showed fining after coarsening. Fine sediment were mainly distributed at the site adjacent to Imha-Dam, and were gradually coarsening. Concentration of trace metals generally tended to increase, and was higher for sites in watershed of Andong watershed (PLI > 1) than for sites in Imha watershed (PLI < 1). Trace metals in the study area were considered to be affected by fine sediment (silt), and contamination of trace metals was somewhat affected by Pb, and greatly affected by Zn and As.

Physicochemical Composition and Heavy Metal Contents on the Sediment of Kwangyang Bay (광양만의 퇴적물에 대한 이화학적 조성 및 중금속 함량)

  • Park, Jong-Chun;Kim, Jin;Lee, Woo-Bum;Lee, Sung-Woo;Joo, Hyun-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.31-37
    • /
    • 2000
  • For the purpose of surveying the physicochemical composition of sediment collected from Kwangyang Bay, the percentage of water loss, COD, $H_2S$, grain size and 10 heavy metals were studied at 17 sites. During the surveying period, the changes of the percentage of water loss were appeared $35.5\;{\sim}\;53.8%$. COD and $H_2S$ were showed $3.8\l{\sim}\;12.9\;mg/g$, and $0.1\;{\sim}11.4\;{\mu}g/g$, respectively, In composition of grain size on the sediment, percentages of grain sizes under $74\;{\mu}m$ were varied from 40.5% to 86.7% and above $74\;{\mu}m$ were varied from 11.5% to 43.0%. From the spatial distribution of heavy metal using contour map, we can suppose some heavy metal discharges which affect sediment of Kwangyang Bay, It was estimated that Shinpung creek, Ssang-bong creek, and draining area of sewange treatment plant were the main discharge among the heavy metal output sources. By comparison between present study and heavy metal guideline of nonpolluted sea sediment that is provided by EPA, US, it was showed that the contents of Pb and Hg were acceptable but contents of Mn, Zn, Cu, Fe, As, and Cr were higher than those of EPA guideline.

  • PDF

Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula (韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.26-35
    • /
    • 1990
  • Sound velocities and attenuation coefficients of marine surface sediments were calculated from insitu acoustic experiments on 4 nearshore areas off Pohang, Pusan Yeosu, and Kunsan around the Korean Peninsula. The relationship between these values and physical properties of sediments was examined and attenuation mechanism was analysed using the estimated gas content. Sound velocities and attenuation coefficients ranging from 1470 to 1616 m/sec and 0.0565 to 0.6604 dB/kHz-m, respectively, are well related to sediment types. The attenuation coefficient is maximum in coarse silts, and the sound velocity increases with density. The gas content estimated less than 8 ppm increases with the decreasing sediment grain size. When the sediment size is greater than fine sand, sound attenuation is mostly due to friction losses, and probably negligible viscous loss remains unchanged with the varying physical properties of sediments. The maximum attenuation in coarse silts result from both friction loss and cohesion of finer sediments between the contacts of silt grains. The cohesion begins to be the dominant dissipative process with decreasing grain size from medium and fine silts.

  • PDF