• Title/Summary/Keyword: sediment grain size

Search Result 344, Processing Time 0.028 seconds

Long-Term Simulation of Reservoir Sedimentation Considering Particle-Size Distributions of Suspended Sediment and Bed Materials (부유사 및 하상토 입도분포를 고려한 저수지 퇴사의 장기모의)

  • Kim, Dae Geun;Shin, Kwang Gyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.87-97
    • /
    • 2013
  • The bed change model of HEC-RAS was used to predict the formation of a delta upon an influx of high-density sediment while taking the particle-size distributions of the suspended sediment and bed materials into account. The model was able to reasonably predict both the spatial-temporal distribution of the delta and the amount of deposited sediment according to the grain size. In addition, it was able to estimate the main type of grains that sediment at particular locations at particular times moderately well. It is expected that the simulation and the analysis considering these particle-size distributions of sediment will provide important information on planning and maintenance of the water resource related facilities.

Comparison of Two Methods in Grain-size analysis: SediGraph and Master Sizer (MasterSizer와 SediGraph에 의한 입도분석 결과의 비교 및 문제점)

  • 정회수;김광신
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1993
  • Sediment grain size was analysed and compared for standard solids and sediment samples using two different methods; SediGraph and MasterSizer. SediGraph results on sediment samples appeared as finer than those of MasterSizer, and the difference is great especially for biogenic siliceous ooze. The difference is maybe due to the following different points in two methods; pretreatment procedure, sample concentration, detachability on fine grains (about 1 um), and detection principle on nonspherical grains.

  • PDF

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

Mixed Carbonate-Detrital Sediments on the Southeastern Continental Shelf of Korea (한반도 동해 남부 대륙붕에 분포하는 탄산질-쇄설성분 혼합 퇴적물에 대한 연구)

  • Choi, Jin-Yong
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.493-499
    • /
    • 1997
  • Grain size analysis have been made for the carbonate-detrital mixed sediments on the continental shelf off the southeastern coast of Korea. The detrital components are well-sorted with mean grain size between 2-3 phi. The detrital components are thought to be deposited in the beach environment during the glacial times when the sea level was low, representing typical 'relict' sediments. Most of the carbonate components consist of shell fragments, and are deeply weathered. They are also interpreted as the relict components that were deposited in the shallow marine environment. The carbonate fraction are coarser-grained and poorly sorted compared to the detrital component. The carbonate components are thought to have experienced the continuous environmental control of fragmentation and selective size sorting after the deposition.

  • PDF

Measurements of Mid-frequency Bottom Loss in Shallow Water of the Yellow Sea (서해 천해환경에서의 중주파수 해저면 반사손실 측정)

  • Yoon, Young Geul;Lee, Changil;Choi, Jee Woong;Cho, Sungho;Oh, Suntaek;Jung, Seom-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.423-431
    • /
    • 2015
  • KIOST-HYU joint acoustics experiment was performed on the western shallow water off the Taean peninsula in the Yellow Sea in May 2013. In this paper, mid-frequency (6~16 kHz) bottom loss data measured in a grazing angle range of $17{\sim}60^{\circ}$ are presented and compared to the predictions obtained using a Rayleigh reflection model. The sediment structure of the experimental site was characterized by multi-layered sediment and the components of the surficial sediment consisted of various types of particles with a mean grain size of $5.9{\phi}$. The model predictions obtained using the mean grain size were not in agreement with the measured bottom loss, and those obtained using the grain size of $4{\phi}$, which was estimated by an inversion process, showed a best fit to the measurements. It would be because the standard deviation of the gain-size distribution of surficial sediment is $4.3{\phi}$, which is much larger than those of other areas around the experimental site. Finally, the model predictions obtained using the geoacoustic parameters estimated from the inversion process for the surficial sediment layer and those corresponding to the mean grain size of $1.3{\phi}$ for lower layer are reasonably agreement with the measured bottom loss data.

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

Shear Wave Velocity in Unconsolidated Marine Sediments of the Western Continental Margin, the East Sea

  • Kim, Gil-Young;Kim, Dae-Choul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.167-175
    • /
    • 2003
  • Shear wave velocity was measured and grain size analysis was conducted on two core samples obtained in unconsolidated marine sediments of the western continental margin, the East Sea. A pulse transmission technique based on the Hamilton frame was used to measure shear wave velocity. Duomorph ceramic bender transducer-receiver elements were used to generate and detect shear waves in sediment samples. Time delay was calculated by changing the sample length from the transducer-receiver element. Time delay is 43.18 μs and shear wave velocity (22.49 m/s) is calculated from the slope of regression line. Shear wave velocities of station 1 and 2 range from 8.9 to 19.0 m/s and from 8.8 to 22 mis, respectively. Shear wave velocities with depth in both cores are qualitatively in agreement with the compared model〔1〕, although the absolute value is different. The sediment type of two core samples is mud (mean grain size, 8-9Φ). Shear wave velocity generally increases with sediment depth, which is suggesting normally consolidated sediments. The complicated variation of velocity anisotropy with depth at station 2 is probably responsible for sediment disturbance by possible gas effect.

Seasonal Variation of Surface Sediment Distribution and Transport Pattern Offshore Haeundae Beach Area (해운대 연안 표층퇴적물 분포의 계절변화와 이동)

  • Kim, Seok-Yun;Jeong, Joo-Bong;Lee, Byoung-Kwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • To study the seasonal pattern of sediment distribution and the transport tendency in Haeundae nearshore area; i) the grain size texture of surface sediment was examined in June, October, and December of 2007, and March and June of 2008, and secondary, ii) the transport tendency was studied by using a two-dimensional sediment transport model of Gao and Collins (1992), and finally, iii) the bathymetric changes were analyzed by using the data collected in February, May, August, and December of 2007 by Haeundae District Office. Spatial distribution of sediment texture, the tendency of sediment transport as well as the bathymetric change showed significant seasonal variations. From June to December of 2007, the eastern part of the Haeundae area, off Dalmaji Hill showed the coarsening of mean grain size with a prominent transport tendency toward the Haeundae beach. On the contrary, the western part of the area, off Dongbaek Island showed a fining trend of mean grain size, and the transport tendency toward the beach was relatively weakened. From December of 2007 to June of 2008, the mean grain size of Mipo Harbor became finer, and the transport tendency toward the central beach decreased. The mean grain size of Dongbaek Island became coarser, while the tendency increased in the direction of the beach. The areas of significant net accumulation and erosion were depicted based on the bathymetric changes between observation periods. During the period of February to May of 2007, net accumulation was observed on the eastern part of the study area, in front of Mipo Harbor. Erosion was generally occurred throughout the area from May to August of 2007. From August to December of 2007, erosion and accumulation was observed off Mipo Harbor and Dongbaek Island, respectively. The change of sediment facies also suggests the accumulation on the eastern coast during the spring, erosion around the entire coast during the summer, and accumulation on the western coast during the winter. The changes in the accumulation and erosion were most apparent during the summer when several typhoons have passed by, while unnoticeable during the spring.