• Title/Summary/Keyword: sediment erosion

Search Result 456, Processing Time 0.033 seconds

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

The Analysis for the Causes of Beach Erosion on Jeonchon-Najung Beach on the East Coast of Korea (전촌-나정해안의 해안침식 원인분석)

  • Yoo, Hyung-Seok;Kim, Kyu-Han;Joung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.611-620
    • /
    • 2008
  • The process of sediment transport has a very complex mechanism due to waves, currents and bottom topography changes. Usually, beach erosion occurs from various causes such as non-equilibrium sediment transport condition, construction of seawall and rip currents. Therefore, when we try to reduce and develop countermeasures for beach erosion, we have to know the main mode and direction of sediment transport that causes beach erosion. In this study, the process of sediment transport on Jeonchon-Najung beach and main causes of beach erosion have been studied. Field investigation data, aerial photos and the results of numerical model test were used in the analysis. As a result, it was realized that the main causes of beach erosion at Jeonchon-Najung beach was due to the construction of fishery harbors and a seawall.

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

Strategic Prospects of Environmental Restoration of Stream Side in Japan(III) - With a Special Reference to the Forest Road, Forest Conservation and Erosion Control - (일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(III) - 임도(林道) 및 치산(治山)·사방(砂防)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.113-125
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. The strategy prospects of environmental restoration in Japan were summarized as follows : 1. When we establish the long term erosion control planning, we should make detail planning after considering of a certain block of watershed units. Because most of the disaster is caused by soil movement which was occurred by water contents. 2. Nowadays, the general torrent erosion control planning system in Japan focused on reducing the sediment such as by placement of erosion control facility and by restoration of afforestation, after calculation of several factors including expected amount of sediment, and the different amount of planned sediment and allowable sediment. 3. In the past, the goal of forest conservation and erosion control planing was to fix the amount of soil movement by construction of permanent facilities. While, the goal of forest conservation and erosion control planning in the future needs to change the techniques to a small and middle scale's soil movement which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively. Also, it is considered to change erosion control dams from non passing type to passing type. 4. Restoration of stream-side ecology, erosion control for the conservation of ecology should be planned and conducted cautiously based on concepts of ecology conservation and development of environmentally sound techniques.

  • PDF

Grid-Based Soil-Water Erosion and Deposition Modeling sing GIS and RS

  • Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.25-34
    • /
    • 2001
  • A grid-based KIneMatic wave soil-water EROsion and deposition Model (KIMEROM) that predicts temporal variation and spatial distribution of sediment transport in a watershed was developed. This model uses ASCII-formatted map data supported from the regular gridded map of GRASS (U.S. Army CERL, 1993)-GIS (Geographic Information Systems), and generates the distributed results by ASCIIl-formatted map data. For hydrologic process, the kinematic wave equation and Darcy equation were used to simulate surface and subsurface flow, respectively (Kim, 1798; Kim et al., 1993). For soil erosion process, the physically-based soil erosion concept by Rose and Hairsine (1988) was used to simulate soil-water erosion and deposition. The model adopts sing1e overland flowpath algorithm and simulates surface and subsurface water depth, and sediment concentration at each grid element (or a given time increment. The model was tested to a 162.3 km$^2$ watershed located in the tideland reclaimed area of South Korea. After the hydrologic calibration for two storm events in 1999, the results of sediment transport were presented for the same storm events. The results of temporal variation and spatial distribution of overland flow and sediment areas are shown using GRASS.

  • PDF

Development of Automatic Extraction Model of Soil Erosion Management Area using ArcGIS Model Builder (ArcGIS Model Builder를 이용한 토양유실 우선관리 지역 선정 자동화 모형 개발)

  • Kum, Dong-Hyuk;Choi, Jae-Wan;Kim, Ik-Jae;Kong, Dong-Soo;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Due to increased human activities and intensive rainfall events in a watershed, soil erosion and sediment transport have been hot issues in many areas of the world. To evaluate soil erosion problems spatially and temporarily, many computer models have been developed and evaluated over the years. However, it would not be reasonable to apply the model to a watershed if topography and environment are different to some degrees. Also, source codes of these models are not always public for modification. The ArcGIS model builder provides ease-of-use interface to develop model by linking several processes and input/output data together. In addition, it would be much easier to modify/enhance the model developed by others. Thus, simple model was developed to decide soil erosion hot spot areas using ArcGIS model builder tool in this study. This tool was applied to a watershed to evaluate model performance. It was found that sediment yield was estimated to be 13.7 ton/ha/yr at the most severe soil erosion hot spot area in the study watershed. As shown in this study, the ArcGIS model builder is an efficient tool to develop simple models without professional programming abilities. The model, developed in this study, is available at http://www.EnvSys.co.kr/~sateec/toolbox for free download. This tool can be easily modified for further enhancement with simple operations within ArcGIS model builder interface. Although very simple soil erosion and sediment yield were developed using model builder and applied to study watershed for soil erosion hot spot area in this study. The approaches shown in this study provides insights for model development and code sharing for the researchers in the related areas.

Evaluation of Sediment Yield using Area-weighted Measured Slope and Slope Length at HeaAn Myeon Watershed (실측 경사장 및 경사도를 고려한 양구 해안면 유역의 유사량 평가)

  • Yoo, Dongseon;Kim, Ki-Sung;Jang, Won Seok;Jun, Mansig;Yang, Jae E.;Kim, Seong Chul;Ahn, Jaehon;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.569-580
    • /
    • 2008
  • In this study, area-weighted slope and slope length module, considering measured field slope and slope length of the agricultural fields within the subwatershed, was developed using the ArcView Avenue programming to reflect the field topography of the Soil and Water Assessment Tool (SWAT) HRU in simulating the hydrology and water quality. Flow and sediment yield estimated values of the SWAT were compared with and without applying area-weighted slope and slope length module, developed in this study. There was 103% increases in estimated sediment with area-weighted slope and slope length module for the study watershed. The soil erosion and sediment yield from only agricultural field in Hae-an watershed was also assessed. There are 111% increase in estimated soil erosion and 112% increase in estimated sediment by applying area-weighted slope and slope length module. This study shows that the area-weighted slope and slope length module needs to be utilized in estimating the HRU field slope and slope length for accurate estimation of soil erosion and nonponit source pollutant modeling with the SWAT although it is not feasible to measure topographic information for every agricultural fields within the watershed. The area-weighted slope and slope length module can be used in identifying soil erosion hot spot areas for developing cost effective and efficient soil erosion management practices.

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Bathymetric Changes in the Nakdong River Estuary owing to Discharge from the Nakdong River Barrier and Environmental Factors (하구둑 방류와 환경적 인자에 따른 낙동강 하구 지역 해저 지형변화 연구)

  • Kim, Ki-cheol;Kim, Sung-Bo
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.507-517
    • /
    • 2021
  • In this study, the bathymetric data acquired from 2018 to 2020 and the precipitation and suspended sediment data were analyzed for changes in bathymetry owing to the discharge from the Nakdong River barrier and environmental factors, especially the torrential rain in 2020. Sediment erosion and deposition processes are repeated because of complex environmental factors such as discharge from the Nakdong River barrier and the influence of waves generated from the external sea. In the first half of the year after the dry season, bathymetric data showed relative erosion trends, whereas in the second half after the flood season, deposition trends were identified owing to the increase in sediment transport. However, the data from the second half of 2020 showed a large amount of erosion, resulting in tendencies different to those of erosion in the first half and deposition in the second half of the year. This result is judged to be influenced by the weather in the summer of 2020. The torrential rain in the summer of 2020 resulted in a higher force of erosion than that of deposition. In summary, the tendency for erosion is more significant than that of sedimentation, especially in the main channel area of the Nakdong River.