• Title/Summary/Keyword: security model

Search Result 3,984, Processing Time 0.035 seconds

Comparative Analysis of CNN Models for Leukemia Diagnosis (백혈병 진단을 위한 CNN 모델 비교 분석)

  • Lee, Yeon-Ji;Ryu, Jung-Hwa;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.279-282
    • /
    • 2022
  • Acute lymphoblastic leukemia is an acute leukemia caused by suppression of bone marrow function due to overgrowth of immature lymphocytes in the bone marrow. It accounts for 30% of acute leukemia in adults, and children show a cure rate of over 80% with chemotherapy, while adults show a low survival rate of 20% to 50%. However, research on a machine learning algorithm based on medical image data for the diagnosis of acute lymphoblastic leukemia is in the initial stage. In this paper, we compare and analyze CNN algorithm models for quick and accurate diagnosis. Using four models, an experimental environment for comparative analysis of acute lymphoblastic leukemia diagnostic models was established, and the algorithm with the best accuracy was selected for the given medical image data. According to the experimental results, among the four CNN models, the InceptionV3 model showed the best performance with an accuracy of 98.9%.

  • PDF

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

A Case Study of Using Creative Teaching Methods: 'National Threats' Learning Task (창의적 교수법 활용 사례: '국가 위협요인' 학습 과제)

  • Jin-Wook Baek;Ju-Ho Jug
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.373-379
    • /
    • 2023
  • Creative teaching methods can be beneficial in enhancing creativity and self-directed learning abilities in the classroom. However, there may be some specific learning tasks where applying creative teaching methods can be difficult. This is because students may not have completed the necessary prerequisite learning before performing the learning task, leading to low reliability of task results or meaninglessness. This study aims to propose teaching methods that enhance creativity and self-directed learning ability when performing learning tasks that may not have sufficient prior learning. To achieve this, we present a case of applying creative teaching methods to a learning task called "national threats". As a research procedure, we provide a suitable teaching method model and detailed procedures for the given learning task, and apply them in actual classes. The results showed that applying the presented teaching methods for the learning task produced meaningful academic achievements. This study can be valuable not only for enhancing creativity in education but also for interdisciplinary research in fields such as education and national security.

Ethereum Phishing Scam Detection based on Graph Embedding and Semi-Supervised Learning (그래프 임베딩 및 준지도 기반의 이더리움 피싱 스캠 탐지)

  • Yoo-Young Cheong;Gyoung-Tae Kim;Dong-Hyuk Im
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.165-170
    • /
    • 2023
  • With the recent rise of blockchain technology, cryptocurrency platforms using it are increasing, and currency transactions are being actively conducted. However, crimes that abuse the characteristics of cryptocurrency are also increasing, which is a problem. In particular, phishing scams account for more than a majority of Ethereum cybercrime and are considered a major security threat. Therefore, effective phishing scams detection methods are urgently needed. However, it is difficult to provide sufficient data for supervised learning due to the problem of data imbalance caused by the lack of phishing addresses labeled in the Ethereum participating account address. To address this, this paper proposes a phishing scams detection method that uses both Trans2vec, an effective graph embedding techique considering Ethereum transaction networks, and semi-supervised learning model Tri-training to make the most of not only labeled data but also unlabeled data.

MAGICal Synthesis: Memory-Efficient Approach for Generative Semiconductor Package Image Construction (MAGICal Synthesis: 반도체 패키지 이미지 생성을 위한 메모리 효율적 접근법)

  • Yunbin Chang;Wonyong Choi;Keejun Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.

A Technique for Accurate Detection of Container Attacks with eBPF and AdaBoost

  • Hyeonseok Shin;Minjung Jo;Hosang Yoo;Yongwon Lee;Byungchul Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.39-51
    • /
    • 2024
  • This paper proposes a novel approach to enhance the security of container-based systems by analyzing system calls to dynamically detect race conditions without modifying the kernel. Container escape attacks allow attackers to break out of a container's isolation and access other systems, utilizing vulnerabilities such as race conditions that can occur in parallel computing environments. To effectively detect and defend against such attacks, this study utilizes eBPF to observe system call patterns during attack attempts and employs a AdaBoost model to detect them. For this purpose, system calls invoked during the attacks such as Dirty COW and Dirty Cred from popular applications such as MongoDB, PostgreSQL, and Redis, were used as training data. The experimental results show that this method achieved a precision of 99.55%, a recall of 99.68%, and an F1-score of 99.62%, with the system overhead of 8%.

A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5 (실시간 객체 검출 기술 YOLOv5를 이용한 스마트 엘리베이터 시스템에 관한 연구)

  • Sun-Been Park;Yu-Jeong Jeong;Da-Eun Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2024
  • In this paper, a smart elevator system was studied using real-time object detection technology based on YOLO(You only look once)v5. When an external elevator button is pressed, the YOLOv5 model analyzes the camera video to determine whether there are people waiting, and if it determines that there are no people waiting, the button is automatically canceled. The study introduces an effective method of implementing object detection and communication technology through YOLOv5 and MQTT (Message Queuing Telemetry Transport) used in the Internet of Things. And using this, we implemented a smart elevator system that determines in real time whether there are people waiting. The proposed system can play the role of CCTV (closed-circuit television) while reducing unnecessary power consumption. Therefore, the proposed smart elevator system is expected to contribute to safety and security issues.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.