• Title/Summary/Keyword: secure computation protocol

Search Result 75, Processing Time 0.021 seconds

An Improved Protocol for Establishing A Session Key in Sensor Networks (센서 네트워크의 노드간 세션키 생성을 위한 개선된 프로토콜)

  • Kim Jong-Eun;Cho Kyung-San
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.137-146
    • /
    • 2006
  • Because the traditional public key-based cryptosystems are unsuitable for the sensor node with limited computational and communication capability, a secure communication between two neighbor sensor nodes becomes an important challenging research in sensor network security. Therefore several session key establishment protocols have been proposed for that purpose. In this paper, we analyzed and compared the existing session key establishment protocols based on the criterions of generation strategy and uniqueness of the session key, connectivity, overhead of communication and computation, and vulnerability to attacks. Based on the analysis results, we specify the requirements for the secure and efficient protocols for establishing session keys. Then, we propose an advanced protocol to satisfy the specified requirements and verify the superiority of our protocol over the existing protocols through the detailed analysis.

Password-Based Authentication Protocol for Remote Access using Public Key Cryptography (공개키 암호 기법을 이용한 패스워드 기반의 원거리 사용자 인증 프로토콜)

  • 최은정;김찬오;송주석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • User authentication, including confidentiality, integrity over untrusted networks, is an important part of security for systems that allow remote access. Using human-memorable Password for remote user authentication is not easy due to the low entropy of the password, which constrained by the memory of the user. This paper presents a new password authentication and key agreement protocol suitable for authenticating users and exchanging keys over an insecure channel. The new protocol resists the dictionary attack and offers perfect forward secrecy, which means that revealing the password to an attacher does not help him obtain the session keys of past sessions against future compromises. Additionally user passwords are stored in a form that is not plaintext-equivalent to the password itself, so an attacker who captures the password database cannot use it directly to compromise security and gain immediate access to the server. It does not have to resort to a PKI or trusted third party such as a key server or arbitrator So no keys and certificates stored on the users computer. Further desirable properties are to minimize setup time by keeping the number of flows and the computation time. This is very useful in application which secure password authentication is required such as home banking through web, SSL, SET, IPSEC, telnet, ftp, and user mobile situation.

A Study On RFID Security Enhancement Protocol Of Passive Tag Using AES Algorithm (AES 알고리즘을 이용한 수동형 태그의 RFID 보안 강화 프로토콜에 관한 연구)

  • Kim, Chang-Bok;Kim, Nam-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.61-68
    • /
    • 2011
  • Recently arithmetic circuit of lightweight AES symmetric key algorithm that can apply to passive tag have been developed, then security protocol of RFID system using AES symmetric encryption techniques have been proposed. This paper proposed security enhancement protocol of RFID system using lightweight AES arithmetic circuit and random number generator of passive tag. The proposed protocol have AES algorithm and random number generator at server, reader, tag, and transmit encrypted message by separate secret key using random number at each session. The mutual authentication of tag and reader used reader random number and tag random number. As a result, proposal protocol reduce authentication steps of the existing mutual authentication protocol, and reduce amount of computation of tag, and demonstrate as secure protocol to every attack type of attacker by decrease communication step of Air Zone.

Efficient RSA-Based PAKE Procotol for Low-Power Devices (저전력 장비에 적합한 효율적인 RSA 기반의 PAKE 프로토콜)

  • Lee, Se-Won;Youn, Taek-Young;Park, Yung-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.23-35
    • /
    • 2009
  • Password-Authenticated Key Exchange (PAKE) Protocol is a useful tool for secure communication conducted over open networks without sharing a common secret key or assuming the existence of the public key infrastructure (PKI). It seems difficult to design efficient PAKE protocols using RSA, and thus many PAKE protocols are designed based on the Diffie-Hellman key exchange (DH-PAKE). Therefore it is important to design an efficient PAKE based on RSA function since the function is suitable for designing a PAKE protocol for imbalanced communication environment. In this paper, we propose a computationally-efficient key exchange protocol based on the RSA function that is suitable for low-power devices in imbalanced environment. Our protocol is more efficient than previous RSA-PAKE protocols, required theoretical computation and experiment time in the same environment. Our protocol can provide that it is more 84% efficiency key exchange than secure and the most efficient RSA-PAKE protocol CEPEK. We can improve the performance of our protocol by computing some costly operations in offline step. We prove the security of our protocol under firmly formalized security model in the random oracle model.

Improved RFID Mutual Authentication Protocol using One-Time Pad and One-Time Random Number Based on AES Algorithm (OTP와 일회성 난수를 사용한 AES 알고리즘 기반의 개선된 RFID 상호 인증 프로토콜)

  • Yun, Tae-Jin;Oh, Se-Jin;Ahn, Kwang-Seon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.163-171
    • /
    • 2011
  • Because RFID systems use radio frequency, they have many security problems such as eavesdropping, location tracking, spoofing attack and replay attack. So, many mutual authentication protocols and cryptography methods for RFID systems have been proposed in order to solve security problems, but previous proposed protocols using AES(Advanced Encryption Standard) have fixed key problem and security problems. In this paper, we analyze security of proposed protocols and propose our protocol using OTP(One-Time Pad) and AES to solve security problems and to reduce hardware overhead and operation. Our protocol encrypts data transferred between RFID reader and tag, and accomplishes mutual authentication by one time random number to generate in RFID reader. In addition, this paper presents that our protocol has higher security and efficiency in computation volume and process than researched protocols and S.Oh's Protocol. Therefore, our protocol is secure against various attacks and suitable for lightweight RFID tag system.

Practical Password-Authenticated Three-Party Key Exchange

  • Kwon, Jeong-Ok;Jeong, Ik-Rae;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.312-332
    • /
    • 2008
  • Password-based authentication key exchange (PAKE) protocols in the literature typically assume a password that is shared between a client and a server. PAKE has been applied in various environments, especially in the “client-server” applications of remotely accessed systems, such as e-banking. With the rapid developments in modern communication environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In such a peer-to-peer channel, it would be much more common for users to not share a password with others. In this paper, we consider password-based authentication key exchange in the three-party setting, where two users do not share a password between themselves but only with one server. The users make a session-key by using their different passwords with the help of the server. We propose an efficient password-based authentication key exchange protocol with different passwords that achieves forward secrecy in the standard model. The protocol requires parties to only memorize human-memorable passwords; all other information that is necessary to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only three rounds and four modular exponentiations per user. In fact, this amount of computation and the number of rounds are comparable to the most efficient password-based authentication key exchange protocol in the random-oracle model. The dispensation of random oracles in the protocol does not require the security of any expensive signature schemes or zero-knowlegde proofs.

Improved a Mutual Authentication Protocol in RFID based on Hash Function and CRC Code (개선된 해시함수와 CRC 코드 기반의 RFID 상호인증 프로토콜)

  • Oh, Se-Jin;Yun, Tae-Jin;Lee, Chang-Hee;Lee, Jae-Kang;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.132-139
    • /
    • 2012
  • In 2011, Woosik Bae proposed a NLMAP(New Low-cost Mutual Authentication Protocol) in RFID based on hash function. They argued that minimize computation such as random number generation. In addition, NLMAP is safe against replay attack, spoofing attack, traffic analysis and eavesdropping attack due to using mutual authentication. So, when applied to RFID system has advantage such as providing a high level of security at a lower manufacturing cost. However, unlike their argue, attacker can obtain Tag's hash computed unique identification information. This paper proves possible the location tracking and spoofing attack using H(IDt) by attacker. In addition, we propose the improved a mutual authentication protocol in RFID based on hash function and CRC code. Also, our protocol is secure against various attacks and suitable for efficient RFID systems better than NLMAP.

Client-Side Deduplication to Enhance Security and Reduce Communication Costs

  • Kim, Keonwoo;Youn, Taek-Young;Jho, Nam-Su;Chang, Ku-Young
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.116-123
    • /
    • 2017
  • Message-locked encryption (MLE) is a widespread cryptographic primitive that enables the deduplication of encrypted data stored within the cloud. Practical client-side contributions of MLE, however, are vulnerable to a poison attack, and server-side MLE schemes require large bandwidth consumption. In this paper, we propose a new client-side secure deduplication method that prevents a poison attack, reduces the amount of traffic to be transmitted over a network, and requires fewer cryptographic operations to execute the protocol. The proposed primitive was analyzed in terms of security, communication costs, and computational requirements. We also compared our proposal with existing MLE schemes.

Attribute based User Authentication for Contents Distribution Environments

  • Yoo, Hye-Joung
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.79-82
    • /
    • 2012
  • In digital contents distribution environments, a user authentication is an important security primitive to allow only authenticated user to use right services by checking the validity of membership. For example, in Internet Protocol Television (IPTV) environments, it is required to provide an access control according to the policy of content provider. Remote user authentication and key agreement scheme is used to validate the contents accessibility of a user. We propose a novel user authentication scheme using smart cards providing a secure access to multimedia contents service. Each user is authenticated using a subset of attributes which are issued in the registration phase without revealing individual's identity. Our scheme provides the anonymous authentication and the various permissions according to the combination of attributes which are assigned to each user. In spite of more functionality, the result of performance analysis shows that the computation and communication cost is very low. Using this scheme, the security of contents distribution environments in the client-server model can be significantly improved.

CLB-ECC: Certificateless Blind Signature Using ECC

  • Nayak, Sanjeet Kumar;Mohanty, Sujata;Majhi, Banshidhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.970-986
    • /
    • 2017
  • Certificateless public key cryptography (CL-PKC) is a new benchmark in modern cryptography. It not only simplifies the certificate management problem of PKC, but also avoids the key escrow problem of the identity based cryptosystem (ID-PKC). In this article, we propose a certificateless blind signature protocol which is based on elliptic curve cryptography (CLB-ECC). The scheme is suitable for the wireless communication environment because of smaller parameter size. The proposed scheme is proven to be secure against attacks by two different kinds of adversaries. CLB-ECC is efficient in terms of computation compared to the other existing conventional schemes. CLB-ECC can withstand forgery attack, key only attack, and known message attack. An e-cash framework, which is based on CLB-ECC, has also been proposed. As a result, the proposed CLB-ECC scheme seems to be more effective for applying to real life applications like e-shopping, e-voting, etc., in handheld devices.