• Title/Summary/Keyword: secure communications

Search Result 486, Processing Time 0.037 seconds

MDS Coded Caching for Device-to-Device Content Sharing Against Eavesdropping

  • Shi, Xin;Wu, Dan;Wang, Meng;Yang, Lianxin;Wu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4484-4501
    • /
    • 2019
  • In this paper, we put forward a delay-aware secure maximum distance separable (MDS) coded caching scheme to resist the eavesdropping attacks for device-to-device (D2D) content sharing by combining MDS coding with distributed caching. In particular, we define the average system delay to show the potential coupling of delay-content awareness, and learn the secure constraints to ensure that randomly distributed eavesdroppers cannot obtain enough encoded packets to recover their desired contents. Accordingly, we model such a caching problem as an optimization problem to minimize the average system delay with secure constraints and simplify it to its convex relaxation. Then we develop a delay-aware secure MDS coded caching algorithm to obtain the optimal caching policy. Extensive numerical results are provided to demonstrate the excellent performance of our proposed algorithm. Compared with the random coded caching scheme, uniform coded caching scheme and popularity based coded caching scheme, our proposed scheme has 3.7%, 3.3% and 0.7% performance gains, respectively.

Authentication and Key Agreement Protocol for Secure End-to-End Communications on Mobile Networks

  • Park, Jeong-Hyun;Kim, Jin-Suk;Kim, Hae-Kyu;Yang, Jeong-Mo;Yoo, Seung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.256-259
    • /
    • 2003
  • This paper presents mutual authentication scheme between user and network on mobile communications using public key scheme based on counter, and simultaneously shows key agreement between user and user using random number for secure communications. This is also a range of possible solutions to authentication and key agreement problem-authentication and key agreement protocol based on nonce and count, and secure end-to-end protocol based on the function Y=f(.)$\^$1/, C$\^$i/ is count of user I, and f(.) is one way function.

  • PDF

A Secure MQAM Scheme Based on Signal Constellation Hopping

  • Zhang, Yingxian;Liu, Aijun;Pan, Xiaofei;Ye, Zhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2246-2260
    • /
    • 2014
  • In this paper, a secure multilevel quadrature amplitude modulation (MQAM) scheme is proposed for the physical layer security (PLS) of the wireless communications. In the proposed scheme, each transmitted symbol's signal constellation (SC) is hopping with the control of two unique factors: amplitude distortion (AD) factor and phase hopping (PH) factor. With unknown the two factors, the eavesdropper cannot extract effective information from the received signal. We first introduce a security metric, referred to as secrecy gain, and drive a lower bound on the gain that the secrecy capacity can be improved. Then, we investigate the relationship among the secrecy gain, the signal to noise power ratios (SNRs) of the main and wiretap channels, and the secrecy capacity. Next, we analyze the security of the proposed scheme, and the results indicate that the secrecy capacity is improved by our scheme. Specifically, a positive secrecy capacity is always obtained, whether the quality of the main channel is better than that of the wiretap channel or not. Finally, the numerical results are provided to prove the analytical work, which further suggests the security of the proposed scheme.

A Cooperative Jamming Based Joint Transceiver Design for Secure Communications in MIMO Interference Channels

  • Huang, Boyang;Kong, Zhengmin;Fang, Yanjun;Jin, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1904-1921
    • /
    • 2019
  • In this paper, we investigate the problem of secure communications in multiple-input-multiple-output interference networks from the perspective of physical layer security. Specifically, the legitimate transmitter-receiver pairs are divided into different categories of active and inactive. To enhance the security performances of active pairs, inactive pairs serve as cooperative jammers and broadcast artificial noises to interfere with the eavesdropper. Besides, active pairs improve their own security by using joint transceivers. The encoding of active pairs and inactive pairs are designed by maximizing the difference of mean-squared errors between active pairs and the eavesdropper. In detail, the transmit precoder matrices of active pairs and inactive pairs are solved according to game theory and linear programming respectively. Experimental results show that the proposed algorithm has fast convergence speed, and the security performances in different scenarios are effectively improved.

Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT

  • Su, Yumeng;Gao, Hongyuan;Zhang, Shibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3256-3274
    • /
    • 2022
  • With the rapid development of information and communications technology, the construction of efficient, reliable, and safe Internet of Things (IoT) is an inevitable trend in order to meet high-quality demands for the forthcoming 6G communications. In this paper, we study a secure intelligent reflecting surface (IRS)-assisted IoT system where malicious eavesdropper trying to sniff out the desired information from the transmission links between the IRS and legitimate IoT devices. We discuss the system overall performance and propose a hybrid resource allocation scheme for maximizing the secrecy capacity and secrecy energy efficiency. In order to achieve the trade-off between transmission reliability, communication security, and energy efficiency, we develop a quantum-inspired marine predator algorithm (QMPA) for realizing rational configuration of system resources and prevent from eavesdropping. Simulation results demonstrate the superiority of the QMPA over other strategies. It is also indicated that proper IRS deployment and power allocation are beneficial for the enhancement of system overall capacity.

Secure Transmission Scheme Based on the Artificial Noise in D2D-Enabled Full-Duplex Cellular Networks

  • Chen, Yajun;Yi, Ming;Zhong, Zhou;Ma, Keming;Huang, Kaizhi;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4923-4939
    • /
    • 2019
  • In this paper, a secure transmission scheme based on the artificial noise is proposed for D2D communications underlaying the full-duplex cellular network, and a secure power allocation scheme to maximize the overall secrecy rate of both the cellular user and D2D transmitter node is presented. Firstly, the full-duplex base station transmits the artificial noise to guarantee the secure communications when it receives signals of cellular uplinks. Under this secure framework, it is found that improving the transmission power of the cellular user or the D2D transmitter node will degrade the secrecy rate of the other, although will improve itself secrecy rate obviously. Hence, a secure power allocation scheme to maximize the overall secrecy rate is presented subject to the security requirement of the cellular user. However, the original power optimization problem is non-convex. To efficiently solve it, we recast the original problem into a convex program problem by utilizing the proper relaxation and the successive convex approximation algorithm. Simulation results evaluate the effectiveness of the proposed scheme.

An Analysis of the 4G Mobile Communications Technology Development Strategy in Korea (4세대이동통신 기술개발전략 분석)

  • 노일수;엄기용;유영신;이병남
    • Proceedings of the Technology Innovation Conference
    • /
    • 2002.06a
    • /
    • pp.257-268
    • /
    • 2002
  • Korean mobile communications industry has been a main locomotive of the drastic development of Korean IT industry and became one of core industries in national economy. To secure strong competitiveness of mobile communications industry, smooth cooperation should be reconsidered among government, universities, research institutions, and private companies. Future mobile communications technology will be evolved from IMT-2000 to system upgrade, 3.5G and 4G. And the goals of technology development are provision of mobile multimedia services based on better mobility and higher data speed rates. Therefore, Korea's technology development strategies of mobile communications should be focused on intensifying bondage of international cooperation, strengthening standardization activities, and enhancing core technology development capability to secure IPR.

  • PDF

Military Group Key Management for Mobile and Secure Multicast Communications (이동성과 보안성 있는 멀티케스트 통신을 위한 군용 그룹 키 관리)

  • Jung, Youn-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.977-983
    • /
    • 2010
  • In mobile and secure military networks, full-meshed IPSec tunnels, which do correspond to not physical links but logical links between each IPSec device and its peer, are required to provide multicast communications. All IPSec devices need support in changing IPSec tunnels by a way of using a multicast group key which is updated dynamically. Tactical terminals, which often constitute a group, need also secure multicast communications in the same group members. Then, the multicast group key is required to be updated dynamically in order to support group members' mobility. This paper presents challenging issues of designing a secure and dynamic group key management of which concept is based on the Diffie-Hellman (DH) key exchange algorithm and key trees. The advantage of our dynamic tree based key management is that it enables the dynamic group members to periodically receive status information from every peer members and effectively update a group key based on dynamically changing environments.

A Study of TCP LINK based Real-Time Secure Communication Research in the Ocean (해상에서 실시간 TCP 링크관절 보안통신 연구)

  • Yoo, Jaewon;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.250-253
    • /
    • 2014
  • Due to limited resource, marine communication is severely limited when compared to communications in land. Radio relay facilities, etc. based on a wired network through a long distance communication is possible. In addition, the aircraft is in the air, the ground-based network service based on long-range straight-line distance and elevation (LOS: Line of Sight) communications. On the other hand, the distance in a straight line to the sea, the sea level because communication is limited or through satellite, underwater communications relay equipment installed in the communication scheme has been investigated.. In this paper, using TCP-based real-time joint maritime security communication links were studied. Harsh marine environment, real-time communication that can provide secure communications and propose a LINK joint. In this study, more secure, and convenient communications at sea, a plan was presented to you.

  • PDF