• 제목/요약/키워드: sectional die

검색결과 63건 처리시간 0.021초

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

스플라인 이형인발을 위한 중간 다이 단면형상 설계 (Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline)

  • 이재은;이태규;이상곤;김병민
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

리스트라이킹 드로잉금형용 펀치와 다이블록의 구조설계 (A structural design of punch and die block for restriking drawing die)

  • 김세환
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Restriking method is to add to process in order to get the correct size and high precision accuracy of product which is formed in pre-process. This method is widely used at bending work and drawing work. Restriking die is particularly design and used as restriking process is performed. Therefore, production cost is increasing as one process or a two process are added. In this paper, punches and die block of square shell drawing die which could be performed drawing work and restriking process by using only one die are designed in order to solve these factors. The structure of sectional die which can integrate drawing die and restriking die was developed.

  • PDF

레이디얼압출에서 금형구조에 따른 플렌지의 성형형태 (The deformation patterns of flange according to die geometry in the radial extrusion)

  • 고병두;강동명;이하성
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.7-10
    • /
    • 2008
  • Restriking method is to add to process in order to get the correct size and high precision accuracy of product which is formed in pre-process. This method is widely used at bending work and drawing work. Restriking die is particularly design and used as restriking process is performed. Therefore, production cost is increasing as one process or a two process are added. In this paper, punches and die block of square shell drawing die which could be performed drawing work and restriking process by using only one die are designed in order to solve these factors. The structure of sectional die which can integrate drawing die and restriking die was developed.

  • PDF

사출구 구조에 따른 옥수수가루 압출성형물의 팽화특성 (Effect of Die Geometry on Expansion of Corn Flour Extrudate)

  • 구본재;류기형
    • 산업식품공학
    • /
    • 제15권2호
    • /
    • pp.148-154
    • /
    • 2011
  • 사출구 구조가 압출성형의 목적변수인 팽화특성에 영향을 미치는지 알아보기 위하여 사출구의 기하학적 구조를 사출구상수로 산출하여 사출구상수와 수분함량에 따른 팽화특성을 비롯한 비기계적 에너지 투입량, 수분용해지수, 수분흡착지수를 분석하였다. 압출성형 공정변수는 수분함량(20, 25%), 사출구멍의 길이와 직경비(L/D 0.67, 1.67, 2.67), 내벽에서 좁아지는 각(57, $95^{\circ}$)이였다. 비기계적 에너지 투입량은 수분함량 20%, 사출구상수 2.23E-10 $m^3$에서 가장 높은 값을 나타내었다. 수분함량 20%에서 사출구상수가 증가하면, 직경팽화지수와 체적팽화지수는 증가하였다. 한편 수분함량 25%에서 직경팽화지수와 체적팽화지수는 사출구상수의 영향을 받지 않았다. 또한 길이팽화지수는 수분함량이 20%에서 25%로 증가할 때 증가하였으며 직경팽화지수와 음의 상관관계를 나타내었다. 수분흡착지수와 수분용해지수는 사출구상수에 영향을 받지 않았다.

분할가변금형을 이용한 박판의 가변성형공정 연구 (Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material)

  • 허성찬;구태완;송우진;김정;강범수
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.299-305
    • /
    • 2010
  • 가변성형 공정에서 동일한 크기의 성형펀치 배열로 구성된 가변금형을 이용하는 경우 펀치의 크기가 일정하여 성형 가능한 곡률 반경이 제한되기 때문에 비교적 유연성이 낮다. 이에 본 연구에서는 가변금형의 유연성을 높이기 위하여 분할가변금형에 대한 개념을 제안하였다. 임의의 성형면을 형성하기 위하여 두 가지 크기의 펀치로 구성된 펀치 블록을 착안하였다. 상대적으로 큰 곡률 반경을 갖는 성형영역에 대해서는 크기가 큰 펀치 블록을 적용하였으며, 작은 곡률 반경을 갖는 성형영역에 대해서는 작은 크기의 펀치로 구성된 펀치 블록을 적용하였다. 해석적 연구를 토대로 성형된 제품의 단면 형상을 비교하였으며 이로부터 서로 다른 크기의 펀치 블록을 조합하여 구성한 분할가변금형을 이용한 판재의 성형공정이 비교적 복잡한 곡률 반경 분포를 갖는 곡면 가공에 적합함을 확인하였다.

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF

중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계 (Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail)

  • 박정현;이경훈;김성민;김희중;김성진;김병민
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

기계식 프레스 압입 방식의 냉간단조용 금형 예압 부과 공정의 유한요소해석 (Finite Element Analysis of Mechanical Pre-stressing Processes of Cold Forging Dies)

  • 변종복;전유종;강성묵;이광희;전만수
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.362-369
    • /
    • 2020
  • In this study, elastoplastic finite element analysis with multi-body treatment was used to elucidate the mechanical phenomena occurring from pre-stressing of die-system. A finite element analysis model with detailed conditions is proposed. The effects of die pre-stressing slope on the circumferential components of the pre-stressed die inserts were evaluated. The role of tight fitting between the supporter and die case was also emphasized because it has a significant effect on the undesirable change in the target slope of machined inner surface of the die case around the die insert. The two mechanical problems include the one between die-insert and die case and the other between supporter and die case, and their correlation is minimized to establish the optimum design in the die structural design stage because it cannot be quantitatively controlled owing to various factors affecting the die structural behavior during die pre-stressing.

단면성형 해석에 의한 자동차 내부 판넬의 설계 (Design of automotive inner panel by sectional forming analysis)

  • 금영탁;왕노만
    • 오토저널
    • /
    • 제12권6호
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF