• Title/Summary/Keyword: sectional area

Search Result 1,466, Processing Time 0.031 seconds

Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method (최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계)

  • Kim, Cheol;Ha, Tae-jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

Next Generation Fiber Length Measurement

  • Tiikkaja, Esa;Sopenlehto, Taina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.54-59
    • /
    • 2000
  • The next generation fibre size analyser has been developed in Kajaani based on over 15 years experience in fibre measurement. This new FiberLab-analyser can measure fibre length both along the fibre centre line and as projected. The cross-sectional measurements of fibre are in principle similar to the earlier version FiberLab. Measured data are generally displayed in distributions. Some new calculations have been added, for example the fibres cross sectional area and fibre volume index both available as distributions as well. The performance of the FiberLab measurement is verified against the manual microscopic testing. These tests show that the new image analysis-based measurement well matches with the manual methods.

  • PDF

A Study on the Design and Structure Optimization of an Automatic Mooring System for a 6000 ton Class Autonomous Ship (6000톤급 자율운항선박을 위한 자동계류장치 설계 및 구조 최적화에 대한 연구)

  • Kim, Namgeon;Shin, Haneul;Kim, Teagyun;Park, Jihyuk
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • This paper presents the design for the kinematic structure of a system for an automatically moored 6000 ton autonomous ship in a port, and the process and results of optimal design for the link cross-sectional shape. We propose an automatic mooring system with a PPP type serial manipulator structure capable of linear motion in the XYZ axis. The mooring force applied by the mooring system was derived with dynamics simulation tool "ADAMS". The design goal is the minimization of the cross-sectional area of the link. Constrains include compressive stress and shear stress. The optimization problems were solved by using the sequential quadratic programing method implemented in the fmincon package. The shape of the cross section was assumed to be rectangle. Through future research, we plan to manufacture automatic mooring system for 6000ton class autonomous ship.

Morphological difference of symphysis according to various skeletal types using cone-beam computed tomography (안면골격 유형에 따른 하악 전치 치조골의 형태 차이: Cone-beam CT를 이용한 정량적 평가)

  • Kwon, Hyun-Jin;Chun, Youn-Sic;Kim, Min-Ji
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • Purpose: The aim of this study was to investigate differences between the morphology of the mandibular symphysis and four facial skeletal types. Materials and Methods: 40 cone-beam computed tomographies were selected and classified in to 4 groups according to their vertical and anterior-posterior skeletal patterns. The bone volume ($mm^3$) of the symphysis, the cross sectional area corresponding to the 4 mandibular incisors' axis: the cross sectional area of total bone ($mm^2$), the area of the cancellous bone ($mm^2$) and the thickness (mm) of labial and lingual alveolar bone at 2 mm, 3 mm under the cemento-enamel junction (CEJ) were measured. General linear model (GLM), Kruskal-Wallis test and Tukey honestly significant difference (HSD) test were subsequently used for statistical analysis. Results: The lingual cortical bone thickness of the lateral incisors at 2, 3 mm under CEJ was greater in the Class I low angle group than the other 3 groups (P < 0.05). There were no statistically significant differences in the volume of the mandibular incisor bony support, cross-sectional area of total bone and cancellous bone at the mandibular incisor' axis. Conclusion: Patients in Class I, low angle group have a thicker lingual mandibular symphysis than Class I, high angle patients.

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

EFFECT OF SURFACE DEFECTS AND CROSS-SECTIONAL CONFIGURATION ON THE FATIGUE FRACTURE OF NITI ROTARY FILES UNDER CYCLIC LOADING (전동식 니켈 티타늄 파일의 표면 결함 및 단면 형태가 반복응력 하에서 피로 파절에 미치는 영향)

  • Shin, Yu-Mi;Kim, Eui-Sung;Kim, Kwang-Man;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • The purpose of this in vitro study was to evaluate the effect of surface defects and cross-sectional configuration of NiTi rotary files on the fatigue life under cyclic loading. Three NiTi rotary files ($K3^{TM},{\;}ProFile^{\circledR},{\;}and{\;}HERO{\;}642^{\circledR}$) with #30/.04 taper were evaluated. Each rotary file was divided into 2 subgroups : control (no surface defects) and experimental group (artificial surface defects), A total of six groups of each 10 were tested. The NiTi rotary files were rotated at 300rpm using the apparatus which simulated curved canal (40 degree of curvature) until they fracture. The number of cycles to fracture was calculated and the fractured surfaces were observed with a scanning electron microscope. The data were analyzed statistically. The results showed that experimental groups with surface defects had lower number of cycles to fracture than control group but there was only a statistical significance between control and experimental group in the $K3^{TM}$ (p<0.05), There was no strong correlation between the cross-sectional configuration area and fracture resistance under experimental conditions. Several of fractured files demonstrated characteristic patterns of brittle fracture consistent with the propagation of pre-existing cracks. This data indicate that surface defects of NiTi rotary files may significantly decrease fatigue life and it may be one possible factor for early fracture of NiTi rotary files in clinical practice.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Analysis on Topography and Exposure Duration of Siheung Tidal Flat Using Remote Sensing Techniques (위성영상 분석기술을 이용한 시흥갯벌의 지형 및 노출시간 분석)

  • Koo, Bon Joo;Kim, Minkyu
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • In order to investigate the topography and exposure duration of the Siheung tidal flat, tidal ranges and DEM constructed by remote sensing techniques were analyzed. A cross-sectional diagram of the intertidal area reveals that it is relatively flat in the upper zone and then abruptly plunges into the bottom of the main channel where elevations increase in an upstream direction. The waterline during the Highest Low Water (HLW) is drawn back to the bottom of the channel at the middle part of the tidal flat and is formed along the slant of the channel during the Lowest High Water (LHW). The intertidal zone is located between -410 cm and 510 cm in terms of elevation and its total area is $0.65km^2$. An area between the Highest High Water (HHW) and Lowest High Water (LHW), occupying about 80% of the total area, occupies $0.52km^2$ of total area and accounts for 56% of the exposure duration. The boundary of wetland protection area in the Siheung tidal flat did not exactly coincide with the intertidal regime and differs by more than 15%. This study, which precisely analyzed the tidal flat area, tidal environment, and topography, would be useful in making a conservation plan and in learning how to use a wetland protection area in a sustainable manner.

A Study on the Explosion Relief Venting in the Gas Explosion (실내 가스 폭발시 폭발압력 방출에 관한 연구)

  • Oh, Kyu-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.71-77
    • /
    • 2005
  • This study aims to find the safe vent area to prevent a destruction of building by gas explosion in a building. Explosion vessel which used in this experiment is 1/5 scale down model of simple livingroom and its dimension is 100cm in length 60cm in width and 45cm in height. Liquified petroleum gas(LPG) was injected to the vessel to the concentration of 4.5vol%, and injection rate were varied in 1L/min or 4L/min. Gas mixture was ignited by the 10kV electric spark. For analysis the characteristics of vented explosion pressure according to the vent size and vent shape, its size and shape were varied. From the experiment, it was found that explosion pressure in the vented explosion :in affected by the gas injection rate, vent area and vent shape. And the vent area to volume ratio(S/V) to prevent the building destruction by explosion pressure, it is recommended that the design of vent area happened by the explosion should be above 1/500cm in S/V. And if the vent area has complicate structure in same area, vented explosion pressure will be higher than a single vent, and possibility of building destruction will increase. Therefore to effectively vent the explosion pressure for protect a building and residents from the gas explosion hazards, the same vent area should have a singular and constant shape in the cross-sectional area of the vessel.

Position of the hyoid bone and its correlation with airway dimensions in different classes of skeletal malocclusion using cone-beam computed tomography

  • Shokri, Abbas;Mollabashi, Vahid;Zahedi, Foozie;Tapak, Leili
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • Purpose: This study investigated the position of the hyoid bone and its relationship with airway dimensions in different skeletal malocclusion classes using cone-beam computed tomography (CBCT). Materials and Methods: CBCT scans of 180 participants were categorized based on the A point-nasion-B point angle into class I, class II, and class III malocclusions. Eight linear and 2 angular hyoid parameters(H-C3, H-EB, H-PNS, H-Me, H-X, H-Y, H-[C3-Me], C3-Me, H-S-Ba, and H-N-S) were measured. A 3-dimensional airway model was designed to measure the minimum cross-sectional area, volume, and total and upper airway length. The mean crosssectional area, morphology, and location of the airway were also evaluated. Data were analyzed using analysis of variance and the Pearson correlation test, with P values <0.05 indicating statistical significance. Results: The mean airway volume differed significantly among the malocclusion classes(P<0.05). The smallest and largest volumes were noted in class II (2107.8±844.7 ㎣) and class III (2826.6±2505.3 ㎣), respectively. The means of most hyoid parameters (C3-Me, C3-H, H-Eb, H-Me, H-S-Ba, H-N-S, and H-PNS) differed significantly among the malocclusion classes. In all classes, H-Eb was correlated with the minimum cross-sectional area and airway morphology, and H-PNS was correlated with total airway length. A significant correlation was also noted between H-Y and total airway length in class II and III malocclusions and between H-Y and upper airway length in class I malocclusions. Conclusion: The position of the hyoid bone was associated with airway dimensions and should be considered during orthognathic surgery due to the risk of airway obstruction.