• 제목/요약/키워드: section-based measurement

검색결과 249건 처리시간 0.024초

분포정수계 관로모델을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model)

  • 김도태;홍성태
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법 (Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems)

  • 박재형;전철우;임성일
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

근전계 RCS 측정 오차 요인 및 불확도 분석 (An Analysis of Error Components and Uncertainties in Near-field RCS Measurement)

  • 서민경;태현성;김정규;박호민
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.346-354
    • /
    • 2020
  • Nowadays, it is required to apply low observable technology to weapon systems in operation or under development. Radar Cross Section(RCS) is a measure of the scattered power in an given direction when a target is illuminated by an incident wave and used as a parameter to estimate the low observable performance of weapon system. RCS of a target can be calculated by various numerical methods. However, measurement is also needed to estimate RCS of a complex target because it is difficult to estimate theoretically. To acquire reliable measurement results, an analysis of measurement uncertainty is essential. In this paper, error components and uncertainties of near-field RCS measurement system which was constructed in ASTEC(Aerospace System Test & Evaluation Center) were analyzed based on the IEEE recommended practice for radar cross-section test procedures(IEEE Std. 1502-2007) which describes the uncertainty of RCS measurement and unique error components of this near-field measurement system were also identified.

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.

광패턴을 이용한 능동형 수위 및 거리 측정 기법 (Active Water-Level and Distance Measurement Algorithm using Light Beam Pattern)

  • 김낙우;손승철;이문섭;민기현;이병탁
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.156-163
    • /
    • 2015
  • 본 논문은 광패턴 조사를 통한 능동형 수위 및 거리 측정 기법을 제안한다. 기존 압력식, 부자식, 초음파식, 레이더식 등의 수위측정기법과 달리 최근에는 수위측정의 정확성과 모니터링 편리성을 강조한 영상기반 수위측정기법이 활용되고 있다. 본 논문에서는 참조용 광패턴을 교각이나 제방 등에 동적으로 조사(照射)하고, 카메라 장치로부터 조사된 광패턴 영상을 실시간 분석 처리하여 자동 수위측정 및 조사(照射) 대상물까지의 거리측정을 위한 새로운 방법을 제시한다. 기존 방법이 교각에 기(旣) 부착된 수위표나 마커 인식을 위해 수동적으로 영상데이터를 분석하는 것이었다면, 본 기법은 교각 설치 환경에 대응하여 능동적으로 참조 광패턴을 생성하여 사용함으로써, 난시야(難視野) 환경 및 잡음 대응에 효과적이고, 포터블 형태로 주야간 이용이 가능하며, 별도 조명 설치를 요구하지 않는 등의 강건한 수위 측정을 지원한다. 본 실험은 실내 시험 환경을 구성하여 시뮬레이션 하였으며, 0.4-1.4m 거리 13.5-32.5cm 높이에서 수위 및 거리 측정을 수행하였다.

항공기 형상에 대한 근전계 RCS 측정에서 내삽 알고리즘을 이용한 측정시간 단축에 대한 분석 (An Analysis on the Reduction of Measurement Time Using Interpolation Algorithm in Near-field RCS Measurements for Aircraft Shape)

  • 박호민
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.339-346
    • /
    • 2022
  • The importance of stealth technology is increasing in modern warfare, and Radar Cross Section(RCS) is widely used as an indicator of stealth technology. It is useful to measure RCS using an image-based near-field to far-field transformation algorithm in short-range monostatic conditions. However, the near-field measurement system requires a longer measurement time compared to other methods. In this work, it is proposed to reduce the measured data using an interpolation method in azimuth angular domain. The calculated far-field RCS values according to the sampling rate is shown, and the performance of the algorithm applied with interpolation in the angular domain is presented. It is shown that measurement samples can be reduced several times by using the redundancy in the angular domain while producing results similar to the conventional method.

Determination of the number of 235U target nuclei in the irregular target using a fission time projection chamber

  • Jiajun Zhang;Jun Xiao;Junjie Sun;Mingzhi Zhang;Taiping Peng;Pu Zheng
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.444-450
    • /
    • 2024
  • Based on multiple measurements of ionization loss, the Time Projection Chamber (TPC) combines strong tracking ability with particle identification ability in a large momentum range, which is an important advantage of TPC detection technology over traditional ionization measurement technology. According to these two characteristics of TPC, applying it to the measurement of fission cross-section can greatly improve the measurement accuracy. During the measurement of the fission cross-section, the number of target nuclei is required to be accurately measured. So this paper introduces a method for measuring the number of 235U target nuclei using a fission TPC system. The measurement result agrees with the reference value, and relative error is around 1 %.

수량산출기준 및 공사시방서의 공종분류코드 통합기준 연구 (Integrated Code Classification System for Work Sections in Standard Method of Measurement and Construction Standard Specifications)

  • 강인석;곽중민
    • 한국건설관리학회논문집
    • /
    • 제2권4호
    • /
    • pp.80-91
    • /
    • 2001
  • 건설분야 표준분류체계의 코드항목들은 비용정보, 시방정보 등 분류체계가 적용되는 건설산업분야의 모든 정보들에 일관되게 적용될 때 그 효용성이 극대화될 수 있으므로, 토목분야 공종정보들은 하나의 단일화된 분류체계를 중심으로 동일하게 분류될 필요가 있다. 현행 국내의 토목분야 표준분류체계 중 공종분류체계는 '통합건설정보분류체계', '토목공사 수량산출기준' 및 '공사시방서 작성요령' 내의 공종분류체계가 각각 개별적으로 제시되고 있으며, 10여 종의 토목분야 표준시방서 공종분류 또한 각각 상이한 분류방식 및 코드체계를 사용하고 있다 본 연구는, 토목공사 수량산출기준이 국내 토목분야 공종분류 체계로서의 대표성과 표준분류체계로서의 효용성을 가질 수 있게 하기 위한 방안으로서, 수량산출기준 코드체계를 중심으로 하는 시방서 분류코드의 통합기준을 구성하고 활용방안을 제시하였으며, 웹기반 활용시스템 시안을 구성하여 제시된 통합기준의 활용방안을 구체화하였다.

  • PDF