• Title/Summary/Keyword: section measurement

Search Result 922, Processing Time 0.03 seconds

Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel (자동차 외판 특징선 곡면의 단면 형상 측정과 분석)

  • Choe, W.C.;Chung, Y.C.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

Analysis of the Shape of Gathered Skirts using a Three-Dimensional Measurement System (3차원 계측시스템을 이용한 개더스커트 형상 분석)

  • Jung Hee-Kyeong;Lee Myung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1399-1409
    • /
    • 2005
  • The purpose of this study was to analyze the shape of gathered skirts using a three-dimensional measurement system. And in this experiment, I try to accumulate three-dimensional data of wearing model and to figure out analyzing method made by shape of clothes. The experimental design consists of two factorial designs. I set up three different kinds of fabrics, ratio of gathers. Therefore nine samples were made. The instrument and tools for three-dimensional measurement was whole body 3D scanner. Analysis program used in experiment is RapidForm 2004 PP1 and Pattern Design 2000. Data analysis utilizes SPSS WIN 10.0 Package. T-test to effect an inspection of evidence, there was difference about measurement times. One-way ANOVA to analysis effect of gather made by gathering conditions. The following results were obtained; 1. As a result of inspecting an error several times using a three-dimension measurement system, convinced data was obtained. 2. At front, distribution of gap amount was larger than back. And as ratio of gathers increased, distribution of gap amount showed regularly. 3. After analyzing horizontal sectional figure of skirts, as a height of skirt changed from waist to the bottom of skirts, the results showed as follows. While section width, section thickness, node width, node depth increased, node count decreased. 4. With the horizontal section levels of gather skirt, the silhouette on middle hip section was similar with the silhouette of body line. And as ratio of gathers around hip section increased, nodes showed regularly. At the bottom of skirts showed different nodes by different gathering condition.

The Volume Measurement of Air Flowing through a Cross-section with PLC Using Trapezoidal Rule Method

  • Calik, Huseyin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.872-878
    • /
    • 2013
  • In industrial control systems, flow measurement is a very important issue. It is frequently needed to calculate how much total fluid or gas flows through a cross-section. Flow volume measurement tools use simple sampling or rectangle methods. Actually, flow volume measurement process is an integration process. For this reason, measurement systems using instantaneous sampling technique cause considerably high errors. In order to make more accurate flow measurement, numerical integration methods should be used. Literally, for numerical integration method, Rectangular, Trapezoidal, Simpson, Romberg and Gaussian Quadrature methods are suggested. Among these methods, trapezoidal rule method is quite easy to calculate and is notably more accurate and contains no restrictive conditions. Therefore, it is especially convenient for the portable flow volume measurement systems. In this study, the volume measurement of air which is flowing through a cross-section is achieved by using PLC ladder diagram. The measurements are done using two different approaches. Trapezoidal rule method is proposed to measure the flow sensor signal to minimize measurement errors due to the classical sampling method as a different approach. It is concluded that the trapezoidal rule method is more effective than the classical sampling.

An Analysis of Error Components and Uncertainties in Near-field RCS Measurement (근전계 RCS 측정 오차 요인 및 불확도 분석)

  • Seo, Mingyeong;Tae, Hyunsung;Kim, Jeongkyu;Park, Homin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.346-354
    • /
    • 2020
  • Nowadays, it is required to apply low observable technology to weapon systems in operation or under development. Radar Cross Section(RCS) is a measure of the scattered power in an given direction when a target is illuminated by an incident wave and used as a parameter to estimate the low observable performance of weapon system. RCS of a target can be calculated by various numerical methods. However, measurement is also needed to estimate RCS of a complex target because it is difficult to estimate theoretically. To acquire reliable measurement results, an analysis of measurement uncertainty is essential. In this paper, error components and uncertainties of near-field RCS measurement system which was constructed in ASTEC(Aerospace System Test & Evaluation Center) were analyzed based on the IEEE recommended practice for radar cross-section test procedures(IEEE Std. 1502-2007) which describes the uncertainty of RCS measurement and unique error components of this near-field measurement system were also identified.

Measurement of Hot WireRod Cross-Section by Vision System (비전시스템에 의한 열간 선재 단면 측정)

  • Park, Joong-Jo;Tak, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1106-1112
    • /
    • 2000
  • In this paper, we present a vision system which measures the cross-section of a hot wire-rod in the steel plant. We developed a mobile vision system capable of accurate measurement, which is strong to vibration and jolt when moving. Our system uses green laser light sources and CCD cameras as a sensor, where laser sheet beams form a cross-section contour on the surface of the hot wire-rod and the reflected light from the wire-rode is imaged on the CCD cameras. We use four lasers and four cameras to obtain the image with the complete cross-section contour without an occlusion region. We also perform camera calibrations to obtain each cameras physical parameters by using a single calibration pattern sheet. In our measuring algorithm, distorted four-camera images are corrected by using the camera calibration information and added to generate an image with the complete cross-section contour of the wire-rod. Then, from this image, the cross-section contour of the wire-rod is extracted by preprocessing and segmentation, and its height, width and area are measured.

  • PDF

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

Measurement of Energy Dependent Neutron Capture Cross Section of 99Tc

  • Lee, Sam-Yol;Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Jeung-Min;Yoon, Jung-Ran
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.495-500
    • /
    • 2004
  • The neutron capture cross section of $^{99}Tc$ has been measured relative to the $^{10}B$(n,g) standard cross section by the neutron time-of-flight(TOF) method in the energy range of 0.007 eV to 47keV using a 46-MeV electron linear accelerator(linac) at the Research Reactor Institute, Kyoto University(KURRI). In order to experimentally prove the result obtained, the supplementary cross section measurement has been made from 0.3 eV to 1 keV using the Kyoto University Lead slowing-down Spectrometer(KULS) coupling to the linac. The relative measurement by the TOF method has been normalized to the reference value(20.01 b) at 0.0253 eV and the KULS measurement to that by the TOF method. The existing experimental data and the evaluated capture cross sections in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been compared with the current measurements by the linac TOF and the KULS experiments. The energy dependency of the KULS data is close to that of the TOF data which are energy-broadened by the resolution function of the KULS.

  • PDF

Marital Relations: A Crithical Review and Development of Measurement (결혼만족도 연구와 척도의 고찰을 통한 새로운 연구 방향과 척도의 모색)

  • 정현숙
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.1
    • /
    • pp.191-204
    • /
    • 1997
  • Reserarch on marital satisfaction adjustment or quality has been one of the most frequently studies area of the investigation in the family field. Yet there has been many problems with the theory and empirical work in this area especially in the area of definitional ambiguity problems of dimensionality level of analysis and problems of measurement. This article is a critical review of this work including both theoretical and empirical problems that typically have occured with the previous research Also a section on suggested modifications for future research in this area and a section of suggestion of new marital satisfaction measurement are included.

  • PDF