• Title/Summary/Keyword: section load

Search Result 1,662, Processing Time 0.064 seconds

An Experimental and analytical study of CFS strengthened Beams (탄소섬유쉬트 보강 보의 실험 및 해석적 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.177-185
    • /
    • 1998
  • This paper deals with the flexural behaviors of R.C beams strengthened by carbon fiber sheets. The behaviors of strengthened beams which were preloaded up to 50%, 60% and 70% of the ultimate load of unstrengthened beam are compared with that of a beam which was not preloaded. The structural behaviors of strengthened beams are compared with analytical method in terms of load-strain of concrete, load-strain of steel bar, load-strain of CFS and falilure load. Four cases of analytical method are investigated according to cracked section or partially cracked section and including strain hardening effect of steel bar or not. Comparing the results of test and analysis, both are similar in terms of load-strain of concrete, and falilure load, the results of analytical method underestimate the failure load. But each results of load-strain of steel bar, load-strain of CFS near at failure is some different, thus near at failure the composite action between CFS and upper concrete is assumed to be disturbed. Consequently, the analytical method was proved to be efficient and accurate in estimating the flexural response of CFS strengthened RC beams.

  • PDF

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Maximum Crippling Load in Eccentrically Compressed rectangular Tubes (편심압축하중을 받는 사각튜브의 최대압괴하중)

  • 김천욱;한병기;정창현;김지홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor (단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석)

  • 이상호;배기훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF

Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity (내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계)

  • 조병완;김영진;윤은이
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

The Development of ASS Controller Using DSP (DSP를 이용한 자동고장구분개폐기의 제어장치 개발)

  • Woo, Chun-Hee;Han, Tae-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.142-147
    • /
    • 2004
  • In this study, We developed the microprocessor based controller for Auto Section Switch(ASS). This is installed at consumer's medium-high voltage(load capacity is below 4,000 kVA) switchgear. This function is cooperate with protection device of fault section and automatically dividing the section. And It is designed by Air putter type extinction structure and adopt the mechanism and breaking part module of existing Load Breaker Switch. In addition, We successfully conducted the operation test and checked main function of proto-type.

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.

The Effect of Longitudinal Stiffeners on Load Carrying Capacity in Steel Pipe-Section Piers (원형강교각에서 수직보강재가 내하력에 미치는 영향)

  • Chang, Kyong Ho;Jang, Gab Chul;Lee, Chan Ho;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.653-660
    • /
    • 2004
  • To increase the efficiency of the urban areas, pipe section steel piers, which have relatively small sections, must be constructed. Since smaller sections mean decreased load capacity, longitudinal stiffeners were applied to the pipe section steel piers to increase their load capacity. Increased load capacity through longitudinal stiffeners, however, could not yet be confirmed. Therefore, the effect of longitudinal stiffeners on the load capacity of pipe section steel piers still needs to be studied. In this paper, the effect of the number of longitudinal stiffeners on the load capacity of steel piers was determined by carrying out elastic plastic FE analysis on material and geometric non-linearity. In addition, comparative analyses of the parameters of the width, the thickness of longitudinal stiffeners, and the slenderness ratio of steel piers were carried out to determine the effects of longitudinal stiffeners.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

Development of Section Load Estimation Program for Smart Distribution Management System (스마트배전 운영시스템용 구간부하 추정 프로그램 개발)

  • Yun, Sang-Yun;Chu, Chul-Min;Kwan, Seung-Chul;Song, Il-Keun;Lim, Sung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1083-1090
    • /
    • 2012
  • In this paper, we present the section load estimation program of distribution system for smart distribution management system. The proposed program is composed with three parts. One is the consistency check part for switch measurements which consist a section. The consistency check is divided into the current and angle test. For the current test, we examine the input and output power flow for the switch group. For the angle test, the result of power flow calculation at previous step is used. Another is the voltage estimation part for the measured switches. We use the weighted least square (WLS) method for the voltage estimation. The third is the part of final section load calculation. The database structure for accomplishing the developed estimation program is also proposed. To verify the accuracy of the experimental results, case studies are performed using a actual data of Jeju island. The developed program can be effectively applied to the distribution operation systems.