• Title/Summary/Keyword: section fiber model

Search Result 128, Processing Time 0.027 seconds

Analysis Study on the Flexural Behaviour of Beams with Enlarged Section using Steel Plate of Carbon Fiber Sheets(CFS) (강판 및 CFS를 사용한 단면증설된 보의 휨보강에 관한 해석적 연구)

  • 심종성;이차돈;오홍섭;황성욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.442-448
    • /
    • 1997
  • An analytical method based on the nonlinear layered finite element method is developed to simulate the load-dsflection behavior of strengthened beams. Beams considered in this study are the ones strengthened either with external steel plate or Carbon Fiber Sheets(CFS) bonded to the overlay soffit. The theoretically obtained load-deflections and strains of the strengthened beams are compared to the corresponding experimental values. Parametric studies are, then. performed using the developed model to investigate the effects of design variables on the flexural behavior of the strengthened beams. Simply supported beams under monotonically increasing loads sre considered exclusively.

  • PDF

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

Effect of delamination on vibration characteristic of smart laminated composite plate

  • Shankar, Ganesh;Varun, Jayant Prakash;Mahato, P.K.
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 2019
  • This study is concerned with a numerical analysis based on the finite element method to describe the effect of midplane delamination in smart laminated composite plate structures. A new finite element model for centrally located delamination and healthy section was developed and coded in Matlab. The transient analysis of delaminated composite plate with integrated Active Fiber Composite (AFC) was investigated in the present article. The formulation of the governing equation was based on the minimum total potential energy approach. The Newmark time integration technique was employed to solve the differential equations. A parametric study on the effects of boundary conditions and AFC patch location, in presence of delamination on the laminated plate were studied.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns

  • El-Heloua, Rafic G.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.245-260
    • /
    • 2015
  • In this study, nominal moment-axial load interaction diagrams, moment-curvature relationships, and ductility of rectangular hybrid beam-column concrete sections are analyzed using the modified Hognestad concrete model. The hybrid columns are primarily reinforced with steel bars with additional Glass Fiber Reinforced Polymer (GFRP) control bars. Parameters investigated include amount, pattern, location, and material properties of concrete, steel, and GFRP. The study was implemented using a user defined comprehensive $MATLAB^{(R)}$ simulation model to find an efficient hybrid section design maximizing strength and ductility. Generating lower bond stresses than steel bars at the concrete interface, auxiliary GFRP bars minimize damage in the concrete core of beam-column sections. Their usage prevents excessive yielding of the core longitudinal bars during frequent moderate cyclic deformations, which leads to significant damage in the foundations of bridges or beam-column spliced sections where repair is difficult and expensive. Analytical results from this study shows that hybrid steel-GFRP composite concrete sections where GFRP is used as auxiliary bars show adequate ductility with a significant increase in strength. Results also compare different design parameters reaching a number of design recommendations for the proposed hybrid section.

Nonlinear Analysis of High-Strength R/C Columns Subjected to Reversed Cyclic Loads with Axial Compression (축력과 반복횡력을 받는 고강도 R/C 기둥의 비선형 해석)

  • 신성우;서선민;한범석;안종문;반병열;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.565-570
    • /
    • 2000
  • The objective of this paper is to analyse the high-strength concrete columns subjected to reversed cyclic and axial loads by using nonlinear analysis model and compare the experimental results with analysis. The analytical parameters are the compressive strength of concrete, spacing of lateral reinforcement and lateral reinforcement ratio. In this study, the proposed analytical model takes ito account the influence of confined concrete, tension stiffening and strain hardening of steel. The high-strength concrete columns are used to model fiber section element. The analysis results are shown comparatively good prediction on envelope curve, accumulative dissipated energy, deformability and so on.

  • PDF

Eccentric strength and design of RC columns strengthened with SCC filled steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.833-852
    • /
    • 2015
  • Self-compacting Concrete Filled steel Tubes (SCFT), which combines the advantages of steel and concrete materials, can be applied to strengthen the RC columns. In order to investigate the eccentric loading behavior of the strengthened columns, this paper presents an experimental and numerical investigation on them. The experimental results showed that the use of SCFT is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. And the performance of strengthened columns is significantly affected by four parameters: column section type (circular and square), wall thickness of the steel tube, designed strength grade of strengthening concrete and initial eccentricity. In the numerical program, a generic fiber element model which takes in account the effect of confinement is developed to predict the behavior of the strengthened columns subjected to eccentric loading. After the fiber element analysis was verified against experimental results, a simple design formula based on the model is proposed to calculate the ultimate eccentric strength. Calibration of the calculated results against the test results shows that the design formula closely estimates the ultimate capacities of the eccentrically compressed strengthened columns by 5%.

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.