• Title/Summary/Keyword: secretome

Search Result 23, Processing Time 0.017 seconds

Anti-migration Effects of the Daesiho-tang (Da Chai Hu-Tang) Water Extract in Cancer Cells by Regulating Macrophage Polarization (대식세포 분화 조절을 통한 대시호탕의 암세포 전이 억제 효과)

  • Jae-Hoon Jeong;Shin-Hyung Park
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • The aim of this study was to investigate the role of Daesiho-tang (Da Chai Hu-Tang) water extract (DSTE) in regulating chronic stress-induced cancer progression, focusing on its activity in modulating tumor-associated macrophages (TAMs). Different stimuli can polarize TAMs into immune-stimulating M1 macrophages or immunosuppressive M2 macrophages. During cancer progression, M2 phenotype increases and supports tumor growth, angiogenesis and metastasis. Notably, chronic stress-induced catecholamines promote M2 macrophage polarization. In this study, we investigated whether DSTE regulates norepinephrine (NE)-induced M2 macrophage polarization in RAW 264.7 mouse macrophage cells. Even though NE itself did not increase the expression of M2 markers, the conditioned media of NE-treated 4T1 mouse breast cancer cells (NE CM) significantly up-regulated M2 markers in RAW 264.7 cells, suggesting that NE-regulated cancer cell secretome stimulated M2 polarization. However, such increase was abrogated by DSTE. NE CM also induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) in RAW 264.7 cells, which was clearly reversed by pretreatment with DSTE, demonstrating that DSTE inhibited M2 polarization by inactivating STAT6. Finally, M2-polarized RAW264.7 cells by NE CM markedly increased the migration of 4T1 cells. However, such increase was completely reversed by co-treating RAW264.7 cells with NE CM and DSTE, indicating that DSTE attenuated cancer cell migration by blocking M2 polarization. Taken together, our results suggest a probable use of DSTE for cancer patients under chronic stress by regulating M2 macrophage polarization.

Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes (인체 섬유아세포 및 케라티노사이트에 대한 지방줄기세포 분비물의 세포생물학적 기능)

  • Lee, Jae-Seol;Lee, Jong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.117-127
    • /
    • 2012
  • The beneficial effects of adipose-derived stem cell conditioned media (ADSC-CM) for skin regeneration have previously been reported, despite the precise mechanism of how ADSC-CM promotes skin regeneration remaining unclear. ADSC-CM contains various secretomes and this may be a factor in it being a good resource for the treatment of skin conditions. It is also known that ADSC-CM produced in hypoxia conditions, in other words Advanced Adipose-Derived Stem cell Protein Extract (AAPE), has excellent skin regenerative properties. In this study, a human primary skin cell was devised to examine how AAPE affects human dermal fibroblast (HDF) and human keratinocyte (HK), which both play fundamental roles in skin regeneration. The promotion of collagen formation by HDFs was observed at 0.32 mg/ml of AAPE. AAPE treatment significantly stimulated stress fiber formation. DNA gene chips demonstrated that AAPE in HKs (p<0.05) affected the expression of 133 identifiable transcripts, which were associated with cell proliferation, migration, cell adhesion, and response to wounding. Twenty five identified proteins, including MMP, growth factor and cytokines such as CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, and MMP-19, were contained in AAPE via antibody arrays. Thus, AAPE might activate the HK biological function and induce the collagen synthesis of HDF. These results demonstrate that AAPE has the potential to be used for clinic applications aimed at skin regeneration.

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.