• Title/Summary/Keyword: secondary structures

Search Result 713, Processing Time 0.029 seconds

Secondary Structure and Phylogenetic Implications of ITS2 in the Genus Tricholoma

  • Suh, Seok-Jong;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2002
  • The internal transcribed spacer (ITS) region in the genus Tricholoma was analyzed, including for its primary nucleotide sequence and secondary structural characterization. The secondary structures of the ITS2 region in the genus Tricholoma were identified for use in bioinformatic processes to study molecular evolution and compare secondary structures. Ten newly sequenced ITS regions were added to the analysis and submitted to the GenBank database. The resulting structure from a minimum energy algorithm indicated the four-domain model, as previously suggested by others. The conserved secondary structure of the ITS2 sequences of the genus Tricholoma exhibited certain unique features, including pyrimidine tracts in the loops of domain A and a complete structure containing four domains, with motifs identified in other ITS2 secondary structures. A phylogenetic tree was derived from sequence alignment based on the secondary structures. From the resulting maximum parsimonious tree, it was found that the species in the genus Tricholoma had evolved monophyletically and were composed of four groups, as supported by the bootstrapping values and pileus color.

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

Effect of Secondary Electron Emission on the Glow Discharges with Different Electrode Gaps (서로 다른 전극간격에서 이차전자 방출이 글로우 방전에 미치는 영향에 관한 연구)

  • Seo, Jeong-Hyun;Kang, Kyung-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.777-782
    • /
    • 2009
  • In this paper, the effect of the secondary electron emission coefficient of Xe ion on glow discharge was examined by ID numerical simulation. The simulation was performed for two distinct structures, short and long gaps. The features of the glow discharges in the both structures, firing and sustain voltages, luminance, and efficiency, were analyzed at various secondary electron emission coefficient of Xe ion.

Stability of Diagrid Structures

  • Rahimian, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • In this paper, the stability requirements for diagrid and mega braced structures are examined. The role of the secondary bracing system for the stability of a diagrid structure is discussed. A simple procedure is proposed for the design of the secondary bracing system when it is required. As a case study, the design of the Hearst Tower diagrid and its secondary bracing system are presented.

SABA (secondary structure assignment program based on only alpha carbons): a novel pseudo center geometrical criterion for accurate assignment of protein secondary structures

  • Park, Sang-Youn;Yoo, Min-Jae;Shin, Jae-Min;Cho, Kwang-Hwi
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.118-122
    • /
    • 2011
  • Most widely used secondary structure assignment methods such as DSSP identify structural elements based on N-H and C=O hydrogen bonding patterns from X-ray or NMR-determined coordinates. Secondary structure assignment algorithms using limited $C{\alpha}$ information have been under development as well, but their accuracy is only ~80% compared to DSSP. We have hereby developed SABA (Secondary Structure Assignment Program Based on only Alpha Carbons) with ~90% accuracy. SABA defines a novel geometrical parameter, termed a pseudo center, which is the midpoint of two continuous $C{\alpha}s$. SABA is capable of identifying $\alpha$-helices, $3_{10}$-helices, and $\beta$-strands with high accuracy by using cut-off criteria on distances and dihedral angles between two or more pseudo centers. In addition to assigning secondary structures to $C{\alpha}$-only structures, algorithms using limited $C{\alpha}$ information with high accuracy have the potential to enhance the speed of calculations for high capacity structure comparison.

Detection of similar GPCRs by using protein secondary structures

  • Ku, Ja-Hyo;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-42
    • /
    • 2008
  • G protein-coupled receptor(GPCR) family is a cell membrane protein, and plays an important role in a signaling mechanism which transmits external signals through cell membranes into cells. Now, it is estimated that there may be about 800-1000 GPCRs in a human genome. But, GPCRs each are known to have various complex control mechanisms and very unique signaling mechanisms. GPCRs are involved in maintaining homeostasis of various human systems including an endocrine system or a neural system and thus, disorders in activity control of GPCRs are thought to be the major source of cardiovascular disorders, metabolic disorders, degenerative disorders, carcinogenesis and the like. As more than 60% of currently marketed therapeutic agents target GPCRs, the GPCR field has been actively explored in the pharmaceutical industry. Structural features, and class and subfamily of GPCRs are well known by function, and accordingly, the most fundamental work in studies identifying the previous GPCRs is to classify the GPCRs with given protein sequences. Studies for classifying previously identified GPCRs more easily with mathematical models have been mainly going on. Considering that secondary sequences of proteins, namely, secondary binding structures of amino acids constituting proteins are closely related to functions, the present paper does not place the focus on primary sequences of proteins as previously practiced, but instead, proposes a method to transform primary sequences into secondary structures and compare the secondary structures, and then detect an unknown GPCR assumed to have a same function in databases of previously identified GPCRs.

  • PDF

Measurement of Secondary Electron Emission Coefficient and Bimolecular Valence Band Energy Structure of Erythrocyte with and Without Bioplasma Treatment

  • Lee, Jin-Young;Baik, Guyon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.483-483
    • /
    • 2012
  • Recently, nonthermal bioplasma has been attracted by researchers due to their potentials to modulate cellular functions resulting in changes of biomolecular electron band structures as well as cell morphologies. We have investigated the secondary electron emission characteristics from the surface of the erythrocyte, i.e., red blood cell (RBC) with and without the nonthermal bioplasma treatment in morphological and biomolecular aspects. The morphologies have been controlled by osmotic pressure and biomolecular structures were changed by well known reactive oxygen species. Ion-induced secondary electron emission coefficient have been measured by using gamma-focused ion beam (${\gamma}$-FIB) system, based on the quantum mechanical Auger neutralization theory. Our result suggests that the nonthermal bioplasma treatment on biological cells could result in change of the secondary electron emission coefficient characterizing the biomolecular valence band electron energy structures caused by the cell morphologies as well as its surface charge distributions.

  • PDF

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Visualization of RNA Secondary Structures

  • Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.35-38
    • /
    • 2000
  • An early step toward evaluating a predicted RNA secondary structure is to visualize the predicted structure in graphical form. This talk will present an algorithm for efficiently drawing RNA secondary structures. The algorithm represents the direction and space for a structural element using vector and vector space, and generates nearly overlap-free polygonal displays. The algorithm and a graphical user interface have been implemented in a working program called VizQFolder on IBM PC compatibles.

  • PDF

Towards improved floor spectra estimates for seismic design

  • Sullivan, Timothy J.;Calvi, Paolo M.;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.109-132
    • /
    • 2013
  • Current codes incorporate simplified methods for the prediction of acceleration demands on secondary structural and non-structural elements at different levels of a building. While the use of simple analysis methods should be advocated, damage to both secondary structural and non-structural elements in recent earthquakes have highlighted the need for improved design procedures for such elements. In order to take a step towards the formation of accurate but simplified methods of predicting floor spectra, this work examines the floor spectra on elastic and inelastic single-degree of freedom systems subject to accelerograms of varying seismic intensity. After identifying the factors that appear to affect the shape and intensity of acceleration demands on secondary structural and non-structural elements, a new series of calibrated equations are proposed to predict floor spectra on single degree of freedom supporting structures. The approach uses concepts of dynamics and inelasticity to define the shape and intensity of the floor spectra at different levels of damping. The results of non-linear time-history analyses of a series of single-degree of freedom supporting structures indicate that the new methodology is very promising. Future research will aim to extend the methodology to multi-degree of freedom supporting structures and run additional verification studies.