• Title/Summary/Keyword: secondary structural elements

Search Result 37, Processing Time 0.025 seconds

Towards improved floor spectra estimates for seismic design

  • Sullivan, Timothy J.;Calvi, Paolo M.;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.109-132
    • /
    • 2013
  • Current codes incorporate simplified methods for the prediction of acceleration demands on secondary structural and non-structural elements at different levels of a building. While the use of simple analysis methods should be advocated, damage to both secondary structural and non-structural elements in recent earthquakes have highlighted the need for improved design procedures for such elements. In order to take a step towards the formation of accurate but simplified methods of predicting floor spectra, this work examines the floor spectra on elastic and inelastic single-degree of freedom systems subject to accelerograms of varying seismic intensity. After identifying the factors that appear to affect the shape and intensity of acceleration demands on secondary structural and non-structural elements, a new series of calibrated equations are proposed to predict floor spectra on single degree of freedom supporting structures. The approach uses concepts of dynamics and inelasticity to define the shape and intensity of the floor spectra at different levels of damping. The results of non-linear time-history analyses of a series of single-degree of freedom supporting structures indicate that the new methodology is very promising. Future research will aim to extend the methodology to multi-degree of freedom supporting structures and run additional verification studies.

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

Mining Structure Elements from RNA Structure Data, and Visualizing Structure Elements

  • Lim, Dae-Ho;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.268-274
    • /
    • 2003
  • Most currently known molecular structures were determined by X-ray crystallography or Nuclear Magnetic Resonance (NMR). These methods generate a large amount of structure data, even far small molecules, and consist mainly of three-dimensional atomic coordinates. These are useful for analyzing molecular structure, but structure elements at higher level are also needed for a complete understanding of structure, and especially for structure prediction. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA due in part to the very small amount of structure data so far available, and extracting the structural elements of RNA requires substantial manual work. Since the number of three-dimensional RNA structures is increasing, a more systematic and automated method is needed. We have developed a set of algorithms for recognizing secondary and tertiary structural elements in RNA molecules and in the protein-RNA structures in protein data banks (PDB). The present work represents the first attempt at extracting RNA structure elements from atomic coordinates in structure databases. The regularities in the structure elements revealed by the algorithms should provide useful information for predicting the structure of RNA molecules bound to proteins.

  • PDF

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

Structural Changes in the Vascular Cambium and Secondary Xylem Elements in the Stem of $Alnus hirsuta(S_{PACH}) Rupr.$. in Relation to the Girth of Tree. (물오리나무$[Alnus hirsuta(S_{PACH}) Rupr.]$ 줄기의 둘레에 따른 유관속형성층과 이기목부의 구조적 변화)

  • 한경식
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 1990
  • The structural changes in the vascular cambium and secondary xylem Alnus hirsuta (SPACH) Rupr. have been investigated in relation to the girth of the tree. The fusiform initials gain a gradual size increase and later remain more or less constant in their length and width. The width of the ray initials remain constant but their heights gradually increase before becoming almost constant. Xylem elements undergo considerable changes in their dimension with the growing girth of the tree and their trends of structural changes are the same as those of cambium.

  • PDF

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

Frequency Window Method for the Vibration of Secondary Structural Systems (Frequency Window Method에 의한 Secondary 구조 시스템의 진동특성)

  • ;Igusa, Takeru;Achenbach, Jan D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.153-158
    • /
    • 1991
  • Recently, demands on light weight, high strength, and low noise or vibration have led to the design of complicated structural systems. Although finite elements [1], mode synthesis [2], and statistical energy analysis [3] can be used to compute the dynamic response of such systems, the structural complexity has made the interpretation of the results of such analysis difficult. Many researchers in dynamic analysis have sought to further develop existing theories or develop alternate methods to obtain greater insight in the behavior of large massive primary systems (P systems) with connected light secondary systems (S systems). Some recent research includes work by Sackman and Kelly [4], Sackman et al.[5], Der Kiureghian et al.[6], and Igusa and Der Kiureghian [7-9] who have combined mode synthesis concepts, matrix algebraic theory, and perturbation methods for characterizing weakly-coupled structural systems. A major limitation of these works are that they are limited to lumped mass S systems. In this paper, the general ideas in the Refs.[4-9] are used to study continuous S systems and the method to reduce the complexity, studied in the works by Igusa, Achenbach, and Min [10,11], is developed into the frequency window method.

  • PDF

A Study of Architectural and Design Elements of Secondary Shirines in Traditional Buddhist Temples in Korea (한국 전통사찰에 있어서 부불전의 건축요소와 의장적 특성에 관한 연구)

  • Cho, Jeong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.102-112
    • /
    • 2010
  • The purpose of this study is to identify the architectural design elements of secondary shrines in traditional Buddhist temples in Korea. For this study, a survey of six kinds of secondary shrines (Myemgbujem, Yeongsanjeon, Eungjinjem, Yaksajeoun, Gwaneumjeon, Mireukjeon), according to specified design elements(building sizes, roof styles, Gongpo, Dancheong, shape of Datjip), was conducted. The results of this study are summarized as follows; Myeongbujem is built in every temples(25 examples), most having simila1ities in sizes and architectural elements(roof, Gongpo structure, Dancheong, Datjip). The majority of Yemgsanjeon(l4 examples) and Eungjinjem shrines(l5 examples) are mostly 3-Gan sized buildings, having a Matbaejibung and Ikkmg structural system. Gwaneumjeon, on the other hands, has 1he most elaborate architectural elements. Among 12 cases, 8 buildings have Paljakjibung, 9 buildings have Silk-Dancheong in innerspace, and Datjip are included in six buildings. Yaksajeon shrines are small in mnnber, but most of these shrines have a Dapo structure, and, despite of their size, are designated as cultural properties.

Estimating floor spectra in multiple degree of freedom systems

  • Calvi, Paolo M.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.17-38
    • /
    • 2014
  • As the desire for high performance buildings increases, it is increasingly evident that engineers require reliable methods for the estimation of seismic demands on both structural and non-structural components. To this extent, improved tools for the prediction of floor spectra would assist in the assessment of acceleration sensitive non-structural and secondary components. Recently, a new procedure was successfully developed and tested for the simplified construction of floor spectra, at various levels of elastic damping, atop single-degree-of-freedom structures. This paper extends the methodology to multi-degree-of-freedom (MDOF) supporting systems responding in the elastic range, proposing a simplified modal combination approach for floor spectra over upper storeys and accounting for the limited filtering of the ground motion input that occurs over lower storeys. The procedure is tested numerically by comparing predictions with floor spectra obtained from time-history analyses of RC wall structures of 2- to 20-storeys in height. Results demonstrate that the method performs well for MDOF systems responding in the elastic range. Future research should further develop the approach to permit the prediction of floor spectra in MDOF systems that respond in the inelastic range.

A Structural Analysis between Comfort Feeling and Sensing in Indoor Environment Using Fuzzy Inference (퍼지추론을 이용한 실내환경 쾌적감성과 감각과의 구조 분석)

  • Kim, Jin;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • There are various kinds of good feelings in indoor environment such as comfort, pleasure, delight, refreshment, geniality, etc. Each feeling is interrelated with other complex elements of senses such as warmth, coldness, calmness, clearness, brightness, etc. In this paper, we described what is good feeling in indoor environment, and developed elements of good feelings using Emotion & Sensibility engineering approach. Resultant elements of good feelings were "comfort," "refreshment," and "freshness." Secondary, we investigated the relationships of these elements with certain elements of senses. "Comfort" is related with "warmth, calmness, brightness, and very clearness in indoor air." "Refreshment" and "freshness" are related with "coldness, moderately calmness, very brightness, and very clearness in indoor air." The relationships were formulated as a fuzzy model. By applying human intuition to this model, we could determine physical ranges of "comfort, refreshment, and freshness."

  • PDF