• Title/Summary/Keyword: secondary physics

Search Result 214, Processing Time 0.022 seconds

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

  • Lee, Chaeyeong;Lee, Sangmin;Chung, Kwangzoo;Han, Youngyih;Chung, Yong Hyun;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.162-168
    • /
    • 2016
  • Proton therapy is increasingly being actively used in the treatment of cancer. In contrast to photons, protons have the potential advantage of delivering higher doses to the cancerous tissue and lower doses to the surrounding normal tissue. However, a range shifter is needed to degrade the beam energy in order to apply the pencil beam scanning technique to tumors located close to the minimum range. The secondary neutrons are produced in the beam path including within the patient's body as a result of nuclear interactions. Therefore, unintended side effects may possibly occur. The research related to the secondary neutrons generated during proton therapy has been presented in a variety of studies worldwide, since 2007. In this study, we measured the magnitude of the secondary neutron dose depending on the location of the detector and the use of a range shifter at the beam nozzle of the proton scanning mode, which was recently installed. In addition, the production of secondary neutrons was measured and estimated as a function of the distance between the isocenter and detector. The neutron dose was measured using WENDI-II (Wide Energy Neutron Detection Instruments) and a Plastic Water phantom; a Zebra dosimeter and 4-cm-thick range shifter were also employed as a phantom. In conclusion, we need to consider the secondary neutron dose at proton scanning facilities to employ the range shifter reasonably and effectively.

A Model of Teaching the Physics of Solar Constant Measurement -An example of Highr School and Teachers College Physics Curricula Developments Based upon the Industrial Requirements- ("태양 상수 측정"지도의 의의와 방법 - 사범대학과 고등학교 교육 및 산업분야 응용을 연관시킨 물리교과 내용 개발의 한 모형 -)

  • Lee, Sung-Muk
    • Journal of The Korean Association For Science Education
    • /
    • v.8 no.1
    • /
    • pp.73-79
    • /
    • 1988
  • According to the previous studies, the science education departments in the college of education should develop better curricula to teach future secondary school teachers in a more professional way As one example of such curricula developments. one important topics of modem physics was integrated to teach the future high school physics teachers In the physics education departments. The title is "The Physics of Solar Constant Measurement The surrounding core physics for this measurements were pulled together with these important points in minds(1) clear goal of learning In the teachers college physics(2) Clear explanation of physics and visualization of important technologies for the high school students(3) these teachings should encourage for the students to use the knowledge and technologies learned through the class toward the industrial applications Korea will move toward one of the heavily industrialized countries in the world where the physics education can become key player to manufacture physics based products. Therefore developments of physics curricula which relates teachers college, high school, and industry will become more and more Important.

  • PDF

Green synthesis of Lead-Nickel-Copper nanocomposite for radiation shielding

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;R. Munirathnam;K.N. Sridhar;L. Seenappa;S. Manjunatha;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4671-4677
    • /
    • 2023
  • For the first time Pb, Ni, and Cu nanocomposites were synthesized by versatile solution combustion synthesis using Aloevera extract as a reducing agent, to study the potential applications in X-ray/gamma, neutron, and Bremsstrahlung shielding. The synthesized Lead-Nickel-Copper (LNC) nanocomposites were characterized by PXRD, SEM, UV-VIS, and FTIR for the confirmation of successful synthesis. PXRD analysis confirmed the formation of multiphase LNC NCs and the Scherrer equation and the W-H plot gave the average crystal sizes of 19 nm and 17 nm. Surface morphology using SEM and EDX confirmed the presence of LNC NCs. Strong absorption peaks were analyzed by UV visible spectroscopy and the direct energy gap is found to be 3.083 eV. Functional groups present in the LNC NCs were analyzed by FTIR spectroscopy. X-ray/gamma radiation shielding properties were measured using NaI(Tl) detector coupled with MCA. It is found to be very close to Pb. Neutron shielding parameters were compared with traditional shielding materials and found LNC NCs are better than lead and concrete. Secondary radiation shielding known as Bremsstrahlung shielding characteristics also studied and found that LNC NCs are best in secondary radiation shielding. Hence LNC NCs find shielding applications in ionizing radiation such as X-ray/gamma and neutron radiation.

Secondary School Science Education for Whom?: An Historical Case Study from Japan

  • Isozaki, Tetsuo
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.6
    • /
    • pp.510-518
    • /
    • 2007
  • In many countries, secondary school science is no longer solely for those destined for careers in science, medicine or engineering and both boys and girls study biology, chemistry and physics. In Japan, secondary science has been studied by boys and girls as a compulsory subject since the establishment of the modem school system in the late 19th Century. However, although 'science for all' is becoming the norm, it appears that science is less popular with girls than it is with boys, and that lower-attaining students are not adequately catered for in Japan and elsewhere. In this paper, the author investigates gender issues in the secondary science curriculum and examines the curriculum for future scientists using a historical perspective and focusing on the case of Japan. An analysis of two historical issues, gender and the curriculum for future scientists, found that, firstly, the science curriculum needs to contain a clear statement of its aims, and, secondly, that the secondary science teacher is one of the most important factors influencing science teaching particularly for girls. ost important factors influencing science teaching especially for girls.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Development and Application of Measurement Tools for Physics Image Using the Semantic Differential Method (의미분석법에 의한 물리 이미지 측정도구 개발 및 적용)

  • Song, Youngwook;Choi, Hyukjoon
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.6
    • /
    • pp.1051-1061
    • /
    • 2017
  • An image is a comprehensive result that you have experienced about an object and means the image that you have on the surface of your consciousness. The image of the subject has an important influence on learning the subject. The image analysis of the subjects that the learners have will be good data to decide the direction of teaching and learning. The purpose of this study is to develop and apply measurement tools for physics image and discuss its educational implications. The research method is to develop the measurement tools for the physics image by semantic analysis method and apply it to the secondary pre-service physics teacher. The subjects of the study were 39 first graders, 31 second graders, 37 third graders, and 38 fourth graders at the University of Education, a total of 145 students, 82 of whom were male and 63 were female. The study results show that the image measurement tools for physics consisted of 25 items from five elements: 'interest,' 'feeling,' 'scope,' 'evaluation,' and 'viewpoint.' There were statistically significant differences between the male and female students in applying the measurement tools developed for the physics image of secondary pre-service physics teachers. Male students showed significantly higher statistical significance than female students in the 'interest' and 'feeling' elements of measurement tools for the physics image. In the 'scope' element of measurement tools for the physics image the second grade was statistically higher than the fourth grade. Finally, we discussed educational implications for image analysis of physics and the usefulness of using measurement tools in physics image.

Fabrication of YBCO coated conductors using the nickel tapes textured in single crystalline qualities

  • Yoo, Ja-Eun;Jung, Kook-Chae;Lee, Jae-Seoung;Oh, Sang-Jun;Kim, Ho-Sup
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.86-91
    • /
    • 2000
  • Ni tapes were textured by taking advantage of their secondary recrystallization. The obtained 18cm long tapes had textures of single crystalline qualities with their [001] axes tilted with respect to the surface and their [010] axes parallel to the rolling direction. YBCO/CeO$_2$/YSZ/CeO$_2$ films grown on the Ni tape had the same crystalline orientations. Magnetic field dependent I-V relations were measured on a 5cm section of the tape. Jc defined by 1mV criterion was 1.5 ${\times}$ 10$^5$A/cm$^2$ at 77K under zero field and was reduced by ${\sim}$50% under the applied magnetic field of 5T.

  • PDF

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

$^{11}B$ Quadrupole Interaction Studies of Boron-doped Graphite Electrode for Lithium Secondary Battery

  • Lee, Youngil;Han, Duk-Young;Lee, Donghoon;Woo, Ae-Ja;Lee, Sam-Hyeon;Kim, Kyung-Han;Lee, Man-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.90-99
    • /
    • 1999
  • Doping of boron atoms in graphite has been well known method to increase the discharge capacity as the negative electrode material for lithium secondary battery. Herein, the boron-doped graphites are prepared by mixing 1, 2.5, 5, and 7 wt. % of boron carbide in carbon during the graphitizing process. The structural states of boron in boron-doped graphites are investigated by solid-state 11B NMR spectroscopy. The resonance lines for substitutional boron atoms are identified as the second order quadrupolar powder pattern with the quardrupole coupling constant, QCC = 3.36(2) MHz. The quantitative analysis of 11B NMR spectra with boron-doped graphite has also been performed via simulation.

  • PDF

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.