• Title/Summary/Keyword: secondary hardness

Search Result 110, Processing Time 0.025 seconds

Microstructural Changes during Tempering Treatment of Nitrogen-permeated STS 410 and 410L Martensitic Stainless Steels (질소침투 열처리한 STS 410 및 410L 마르텐사이트계 스테인리스강의 템퍼링에 의한 조직변화)

  • Lee, Hea Joeng;Kong, Jung Hyun;Lee, Hae Woo;Yu, Dea Kyung;Kang, Chang Yong;Sung, Jang Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.84-93
    • /
    • 2007
  • Microstructural changes during tempering at the temperature range of $300^{\circ}C{\sim}700^{\circ}C$ for the nitrogen-permeated STS 410 and 410L martensitic stainless steels has been investigated. After nitrogen permeation at temperature between 1050 and $1150^{\circ}C$, the surface layer appeared fine $Cr_2N$ of square and rod types in the martensite matrices. Hardness of the nitrogen-permeated surface layer represented 680Hv and 625Hv, respectively, for 410 and 410L steels. It is considered that the fine homogeneously dispersive effect of precipitates by nitrogen caused the increased hardness. Due to the counter current effect of carbon from interior to surface during nitrogen diffusion from surface to interior, the 0.1%C alloyed 410 steel showed the low nitrogen content of 0.025% compared with 0.045% of 410L steel at the distance of $100{\mu}m$ from the surface. Tempering of nitrogen-alloyed 410 and 410L showed the maximum hardness at $450^{\circ}C$. This maximum hardness was considered to be the secondary hardening effect of very fine carbide and nitride. The decrease in hardness at $700^{\circ}C$ was the softening effect of the matrix due to the precipitation of many needle-shaped $Cr_2N$ for 410 steel and the precipitation of coarse nitride of $Cr_2N$ in line with the spherical precipitates with directionality for 410L steel. For 410 steel, the corrosion resistance of nitrogen permeated surface in the solution of 1 N $H_2SO_4$ were nearly unchanged, however the superior corrosion resistance was obtained for nitrogen permeated 410L steel compared to the solution annealed condition.

An analytical Machining models based on Flow Stress Properties for Non-Heat Treated and Heat Treated AISI 4140 Steel (열처리 및 비 열처리 AISI4140강의 유동응력 물성치를 기초로 하는 해석적 가공 모델 연구)

  • Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.419-426
    • /
    • 2011
  • In this study, an experimental and theoretical program were carried out to determine the cutting forces and chip formation at different cutting speeds using a 0.4mm nose radius ceramic insert and -7 rake angle for non heat-treated AISI 4140 (27HRc) and heat-treated AISI 4140 (45 HRc) steel. The results obtained were compared to show the hardness differences between the materials. The secondary deformation zone thicknesses when comparing the two materials show different physical structure but similar size. These results were also discussed in light of the heat treatment and the effects it had on the machining characteristics of the material. In addition, the Oxley Machining Theory was used to predict the cutting forces for these materials and a comparison made. The predicted cutting performances were verified experimentally and showed good agreement with experimental data.

Effect of Matrix Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposites (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 기지상의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.114-124
    • /
    • 1998
  • The effect of matrix phase (austenite, pearlite, martensite) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iorn hardfacing weld deposites has been investigated. In order to examine matrix phase, a series of alloys with different matrix phase by changing the ratio of Cr/C system by heat treatment were employed. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test(RWAT). Even though formation of pearlite phase in the matrix showed higher hardness than that of austenite, there was no observable difference in wear resistance between the pearlite and austenite phase for the same amount of chromium-carbide in the matrix. On the other hand, the formation of martensitic phase,, from heat treated austenitic alloys (high content of Cr), enhanced wear resistance due to its fine secondary precipitates.

  • PDF

A Study on Oil-Seal Rubber Mixing Using ANOVA (분산분석을 이용한 오일씰 고무 배합에 관한 연구)

  • Yoon, Hyun-cheol;Choi, Ju Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.69-75
    • /
    • 2019
  • Oil seals have a great effect on transmission performance and durability. In this study, the optimal rubber mix was derived using dispersion analysis to obtain excellent oil-seal rubber properties. ANOVA was performed twice. The factors were polymers, carbon, magnesium oxide, and calcium hydroxide, which were used as four factors in ANOVA. The response factors were four items (hardness, tensile strength, elongation rate, and compression deformation) obtained through an experiment with a confidence level of 95%. In the first ANOVA, 168 tests were performed, and in the secondary ANOVA, 24 physical tests were conducted using polymers and carbon derived from the primary ANOVA. Through the ANOVA, we derived a rubber mixture recipe.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

Aging Treatment Optimization of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy for Spring Application (스프링용 Ti-3Al-8V-6Cr-4Mo-4Zr 타이타늄 합금의 시효열처리 최적화)

  • Youn, Chang-Suk;Park, Yang-Kyun;Kim, Jong-Hyung;Lee, Soo-Chang;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2017
  • Mechanical properties of titanium alloy can be improved by controlling microstructure through heat treatment. In this study, Ti-3Al-8V-6Cr-4Mo-4Zr metastable beta titanium alloy, was controlled for excellent mechanical property and sound formability through various high temperature heat treatment and aging conditions and the optimum heat treatment conditions were determined. The specimens were heat-treated at $950^{\circ}C$, followed by various aging treatments from $430^{\circ}C$ to $500^{\circ}C$ for 1 to 24 h. As aging temperature and holding time increased, hardness increased by ${\beta}^{\prime}$ phase formation and precipitation of secondary ${\alpha}$ phase in ${\beta}$ matrix. However, the optimum aging temperature and holding time for mechanical properties were at $450{\sim}470^{\circ}C$ for 8~16 hr. Hardness values of the specimen aged at $450^{\circ}C$ for 8 h were found to be the highest. These results can be effectively applied to fabrication of spring with better formability and mechanical property.

Effects of Low Temperature Retrogression on RRA Treatment of 7075 AI Alloy (7075 Al합금의 RRA처리에서 저온 퇴화처리의 효과)

  • Kim, Chang-Joo;Lee, Jung-Moo
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.24-30
    • /
    • 1994
  • Effect of low temperature retrogression on RRA treatment were investigated in the thermomechanically treated 7075 Al alloy. The complete dissolution of GP zones did not occur during retrogression at $170^{\circ}C$ in T6 material. llrop in strength during initial stage of retrogression was due to the partial dissolution of GP zones. And the strength increased with the formation of $\mu '$ and decreased again with the growth of $\mu '$ and/or formation of $\mu '$ When RRA treatment was applied at the minimum or the secondary peak (maximum) in the hardness curve of retrogression treatment, SCC property was improved markedly without reduction of the strength in comparision with that of T6 materials. And the rhanges in the matrix were not sensitive with time during retrogression at low temperature of $170^{\circ}C$ that the strength and SCC properties were similar at both points in the hardness curve of retrogression treatment.

  • PDF

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

Effects of ZrO2 Addition on Optical and Electrical Properties of MgO Films as a Protective Layer for AC PDPs (ZrO2 첨가에 따른 AC PDP 보호막용 MgO 박막의 광학적 전기적 특성)

  • Kim, Chang-Il;Jung, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Eun-Ha;Jung, Seok;Kim, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.422-426
    • /
    • 2008
  • The effects of an addition of $ZrO_2$ on the microstructure and electrical properties of MgO films as a protective layer for AC plasma display panels were investigated. MgO + a 200 ppm $ZrO_2$ protective layer prepared by e-beam evaporation exhibited a secondary electron emission coefficient ($\gamma$) that was improved by 21% compared to that of a pure MgO protective layer. The relative density and Vickers hardness increased with a further addition of $ZrO_2$. These results suggest that the discharge properties and optical properties of MgO protective layers are closely related to the relative density and Vickers hardness. The good optical and electrical properties of $\gamma$, at 0.080, a grain size of $19\;{\mu}m$ and an optical transmittance of 91.93 % were obtained for the MgO + 200 ppm $ZrO_2$ protective layer sintered at $1700^{\circ}C$ for 5 hrs.

Quality Characteristics of Ginger Extract Candy with Salicornia herbacea L. for Calming Effect on Morning Sickness (입덧 진정효과를 위한 생강함초캔디의 제조조건 최적화)

  • Kim, Dah-sol;Lee, Heejeong;Jung, Eun-kyung;Joo, Nami
    • Journal of the Korean Dietetic Association
    • /
    • v.24 no.1
    • /
    • pp.19-30
    • /
    • 2018
  • The primary objective of this study was to develop an optimal composite recipe for ginger extract candy with Salicornia herbacea L., for consumption during the first trimester of pregnancy. The secondary objective was to examine quality characteristics of the candy. The physical and mechanical properties and sensory properties for pregnant women in were measured, and these values were applied to mathematical models. Time of stirring water solution, saltiness, pH, and redness of the candy increased as concentrations of ginger juice did, but variations in pH were not significant. The hardness values of the candy ranged from 3,063.90 to $5,681.65dyne/cm^3$. The average values of sweetness and time stirring the water solution were 5.36% and 14.1 minutes, respectively. However, hardness and sweetness stirring water solution were not significant. The range of sensory values of color (P<0.01), flavor (P<0.05), sweetness, saltiness, spiciness, and overall quality (P<0.05) ranged from were 3.73~5.32, 4.05~5.05, 3.67~5.14, 3.59~5.09, 3.55~5.15, and 3.32~5.45, respectively. Results suggest that ginger extract candy with Salicornia herbacea L. should be comprised of 7.37 g of ginger juice and 1.77 g of salt. Consequently, it could be a functional candy for pregnant women.