• Title/Summary/Keyword: secondary hardness

Search Result 110, Processing Time 0.028 seconds

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

Microstructure and Mechanical Property of TiFe Compounds with Zr or Ce Prepared at Different Solidification Rates (TiFe금속간 화합물의 Zr과 Ce첨가와 냉각속도에 따른 응고 조직 변화 및 기계적 특성)

  • No, Hye-In;Choi, Chang-Wan;Yi, Seonghoon
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.21-25
    • /
    • 2019
  • Microstructural and corresponding hardness changes of TiFe compounds with Zr (0~6 at%) or Ce (0~3 at%) were studied using samples prepared at different solidification rates. In arc-melted (TiFe)-Zr samples, the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases formed in the TiFe matrix, while in the (TiFe)-Ce sample, the $CeO_2$ phase formed along the grain boundary of the TiFe matrix. As the Zr content was increased, the volume fractions of the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases increased, forming a network structure. Accordingly, the hardness values of the samples also increased. With a small addition of Ce of approximately 0.1 at%, the as-cast microstructure could be effectively refined, reducing the average grain boundary diameter from ${\sim}100{\mu}m$ to ${\sim}14{\mu}m$. In the rapidly solidified sample prepared through a melt-spinning method, the constituent phases were identical to those of the arc-melted samples while the grains were refined. The microstructural changes of TiFe alloys can affect the hydrogen storage ability as well as the mobility of the hydrogen atoms in the alloys.

LORAN-C using and Position error improvement against being unable to use the Global Positioning System(GPS) (위성항법시스템(GPS)의 이용불능을 대비한 LORAN-C 활용과 위치오차 개선)

  • Goo, Ja-Heon;Kang, Gwang-Won;An, Young-Eun;Han, Seung-Jo;Park, Jong-An
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Loran-C of ground transmitting station base that can prevent confusion of country navigation system and give BACK-UP function about electric wave navigation comparing utilization incapability state about GPS(Global Positioning System) infra that user is spreading rapidly over our society whole such as sea/aviation safety, vehicles navigation, minuteness agriculture, minuteness measurement in this treatise practical use of Loran-C navigation propose. Executed ASF(Additional Secondary Phase Factor) production and an application experiment Loran-C by location error improvement way to enhance practical use value. By the result Loran-C in conclusion that can improve location error 100~400m remarkably by 10~65m reach. Also, production extent is latitude when go composition medium and bends cotton at ASF revision table utilization of land area, this smell is judged to be suitable hardness 10 minutes. And notable location error improvement and numeric of GPS BACK-UP function are judged to be possible at a ASF revision table application to Korea Peninsula whole area hereafter.

  • PDF

Microstructure and Strength Characteristic of 9Cr Ferritic Heat-resistant Steel Applied to the Power Plants (발전플렌트용 9Cr 페라이트 내열강의 미세조직과 강도특성)

  • Kang, C.Y.;Lee, J.M.;Lee, G.H.;Lee, M.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • This present study were investigated effect of Ni contents on the microstructure and strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restrain laves phase formation. The result obtained from this study are as follow. Volume fraction, number of particles per unite area and particle size of carbide decreased with increase of Ni contents. Other side, carbides of $M_{23}C_6$ type was mainly precipitated in this steel, but laves phases could not precipitated in spite of increasing of aging time. With increase of tempering temperature, hardness was increased, and maximum value was showed around 873k by secondary hardening due to precipitation of $W_2C$ type carbide and then, was decreased. Tensile and yield strength due to decrease precipitation amount of carbide and number of particles per unite area was decreased, but elongation and impact value was increased. In case of aged specimen after tempering than tempered specimen, strength was higher and elongation was lower due to increasing of precipitated amount of carbide and number of particles per unite area.

  • PDF

Characteristics of White Charcoal Produced from the Charcoal Kiln for Thermotherapy (온열욕 겸용 숯가마에서 생산된 백탄의 특성)

  • Kwon, Gu Joong;Kim, Ah Ran;Lee, Hee Soo;Lee, Seung Hwan;Hidayat, Wahyu;Febrianto, Fauzi;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.527-540
    • /
    • 2018
  • In this study, the characteristics of the white charcoal from charcoal kilns made for both charcoal production and thermotherapy and from the traditional charcoal kiln were compared and examined. A charcoal kiln for thermotherapy as a secondary purpose was made to minimize environmental problems such as fine dust and harmful gas generated from sealed charcoal kiln in consideration of comfort and safety. White Charcoal produced from the charcoal kiln for both charcoal production and thermotherapy had higher ash and volatile matter and lower fixed carbon than that from the traditional charcoal kiln. The density of the white charcoal produced from the charcoal kiln for both charcoal production and thermotherapy was slightly higher than that of the traditional one, but the equilibrium moisture content and pH were not significantly different. The calorific value, refinement degree, hardness and anatomical structure were not different between the two. It was concluded that the white charcoal produced from the advanced charcoal kiln for thermotherapy as a secondary purpose meets the quality certification standards of Korea Forest Research Institute.

Heat Treatment Effect on Super Duplex Stainless Steel UNS S32750 FCA Multipass Welds (슈퍼 듀플렉스 스테인리스강 UNS S32750의 FCA 다층 용접부의 용접 후 열처리 영향)

  • Jang, Bok-Su;Moon, In-June;Lim, Myung-Jin;Kim, Se-Cheol;Kim, Soo-Sung;Lee, Jung-Won;Park, Hai-Woong;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • This study was carried out to investigate the effect of postweld heat treatment(PWHT, 930, 1080, $1230^{\circ}C$) on the microstructure, phase formation, pitting corrosion and mechanical properties such as hardness, tensile strength and impact values of super duplex stainless steel(UNS S32750) multipass welds. Based on the microstructural examination and X-ray diffraction analysis, it was found that the ${\sigma}$ phase was formed in the welds heat treated at $930^{\circ}C$ in which the ferrite content greatly decreased into 5~10% in the welds. The secondary austenite was formed in the reheated zone of welds and redissolved into ferrite with increasing heat treatment temperatures. The tensile strength and impact values of welds heat treated at $930^{\circ}C$ were the lowest and revealed the brittle fracture surface. The weight loss by pitting corrosion increased with test temperatures. It was confirmed that pitting corrosion occurred mainly in secondary austenite of reheated zones. The postweld heat treatment temperature is recommended to be in the range of $1050{\sim}1150^{\circ}C$.

A Study on the Mechanical Properties of Duplex Stainless Steel Weldment According to Mo Contents

  • Bae, Seong Han;Lim, Hee Dae;Jung, Won Jung;Gil, Woong;Jeon, Eon Chan;Lee, Sung Geun;Lee, Hyo Jong;Kim, In Soo;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.645-651
    • /
    • 2012
  • This study investigated changes in phase fraction caused by the addition of Mo, as well as the subsequent behaviour of N and its effect on the mechanical properties of welded 24Cr-N duplex stainless steel weld metals. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 1.4, 2.5, 3.5 wt%. The delta ferrite fraction increased as the Mo content increased. In contrast, the ${\gamma}$ fraction decreased and changed from a round to an acicular shape. Secondary austenite (${\gamma}^{\prime}$) was observed in all specimens in a refined form, but it decreased as the Mo content increased to the extent that it was nearly impossible to find any secondary austenite at 3.5 wt% Mo. Both tensile and yield strengths increased with the addition of Mo. In contrast, the highest value of ductility was observed at 1.41 wt% Mo. At all temperatures, impact energy absorption showed the lowest value at 3.5 wt% Mo, at which the amount of ${\delta}$-ferrite was greatest. There was no significant temperature dependence of the impact energy absorption values for any of the specimens. As the fraction of ${\gamma}$ phase decreased, the amount of N stacked in the ${\gamma}$ phase increased. Consequently, the stacking fault energy decreased, while the hardness of ${\gamma}$ increased.

Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing

  • Aziz, Shuokr Qarani;Omar, Imad Ali;Bashir, Mohammed J.K.;Mojiri, Amin
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.233-249
    • /
    • 2020
  • To date, there is no central wastewater (WW) treatment plant in Erbil city, Kurdistan region, Iraq. Therefore, raw WW disposes to the environment and sometimes it used directly for irrigation in some areas of Erbil city. Disposal of the untreated WW to the natural environment and using for irrigation it causes problems for the people and the environment. The aims of the current work were to study the characteristics, design of primary and different secondary treatment units and reusing of produced WW. Raw WW samples from Ashty city-Erbil city were collected and analyzed for twenty three quality parameters such as Total Suspended Solids (TSS), total dissolved solids, total volatile and non-volatile solids, total acidity, total alkalinity, total hardness, five-day Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), biodegradability ratio (BOD5/COD), turbidity, etc. Results revealed that some parameters such as BOD5 and TSS were exceeded the standards for disposal of WW. Design and calculations for primary and secondary treatment (biological treatment) processes were presented. Primary treatment units such as screening, grit chamber, and flow equalization tank were designed and detailed calculation were illustrated. While, Conventional Activated Sludge (CAS), Sequencing Batch Reactor (SBR) and Moving Bed Biofilm Reactors (MBBR) were applied for the biological treatment of WW. Results revealed that MBBR was the best and economic technique for the biological treatment of WW. Treated WW is suitable for reusing and there is no restriction on use for irrigation of green areas inside Ashty city campus.

A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys (Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

Hydroxyapatite-Zirconia Composite Thin Films Showing Improved Mechanical Properties and Bioactivity

  • Kim, Min-Seok;Ryu, Jae-Jun;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.85-89
    • /
    • 2009
  • Nano-crystalline hydroxyapatite (HAp) films were formed at the Ti surface by a single-step microarc oxidation (MAO), and HAp-zirconia composite (HZC) films were obtained by subsequent chemical vapor deposition (CVD) of zirconia onto the HAp. Through the CVD process, zero- and one-dimensional zirconia nanostructures having tetragonal crystallinity (t-ZrO2) were uniformly distributed and well incorporated into the HAp crystal matrix to form nanoscale composites. In particular, (t-$ZrO_2$) was synthesized at a very low temperature. The HZC films did not show secondary phases such as tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) at relatively high temperatures. The most likely mechanism for the formation of the t-$ZrO_2$ and the pure HAp at the low processing temperature was proposed to be the diffusion of $Ca^{2+}$ ions. The HZC films showed increasing micro-Vickers hardness values with increases in the t-$ZrO_2$ content. The morphological features and phase compositions of the HZC films showed strong dependence on the time and temperature of the CVD process. Furthermore, they showed enhanced cell proliferation compared to the $TiO_2$ and HAp films most likely due to the surface structure change.