• Title/Summary/Keyword: secondary emission

Search Result 399, Processing Time 0.027 seconds

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Estimation of Microplastics Emission Potential in South Korea - For Primary Source - (우리나라 미세플라스틱의 발생잠재량 추정 - 1차 배출원 중심으로 -)

  • LEE, HYE-SUNG;KIM, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.135-149
    • /
    • 2017
  • Microplastics are fractions of plastics less than 5 mm in size and can be divided into artificially manufactured primary microplastics and physically or chemically decomposed secondary microplastics. In this study, the emission source of microplastics made by the human activities is defined as the primary source of microplastics. And the primary sources of microplastics were summarized by using the literature and the emission potential of each source was estimated. As a result, this study showed that 63,000 to 216,000 ton/year of microplastics were discharged into the environment. Among primary sources, transport, tyre dust, and laundry were the major primary sources.

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

Application of Quantum-dot Nanocrystals for Cyanobacterial Toxin-Microcystin Detection (나노크리스탈 Quantum-dot을 적용한 남조류 독소 Microcystin 탐지 연구)

  • Lee, Jinwook;Yu, Hye-Weon;Kim, In S.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • Green quantum-dot nanocrystal (QD525) with anti-microcystin monoclonal antibody was applied for detection of microcystin, a monocyclic peptide hepatotoxin, extracted from the culture of Microcystis aeruginosa. The presence of microcystin in the cell lysate was verified by HPLC analysis with UV absorbance at 238 nm. Microcystis cell extract exhibited fluorescence emission spectra, which peak was around 460 nm because of their complex organic substances. When a spherical QD525 antibody conjugates (10~20 nm in diameter) were bound to the microcystins in the Microcystis cell lysate, the fluorescence intensity of the primary peak at 525 nm diminished while the secondary emission peak at 460 nm slightly increased intensities. It is due to energy transfer from the primary (major) to the secondary (minor) peak, resulting from physical deformation of QD525 and different environmental factors. On the other hand, other cell extracts did not show any fluorescence emission change. This study is very available for detecting and monitoring the microcystin because it is one step assay without washing step and portable spectrophotometer makes on-site measurement possible. For health risk assessment of the microcystin, the reliable and rapid system to detect and quantify microcystin is seriously required.

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

Silver Colloidal Effects on Excited-State Structure and Intramolecular Charge Transfer of p-N,N-dimethylaminobenzoic Acid Aqueous Cyclodextrin Solutions

  • Choe, Jeong Gwan;Kim, Yang Hui;Yun, Min Jung;Lee, Seung Jun;Kim, Gwan;Jeong, Sae Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.219-227
    • /
    • 2001
  • The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia /Ib) of DMABA in the aqueous $\alpha-CD$ solutions are greatly decreased while the Ia /Ib values in the aqueous B-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in $\alpha-CD$ or B-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of νs (CO2-)(1380 cm-1 ) with appearance of ν(C-OH)(1280 cm -1) band, respectively. Thus, in the aqueous B-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen-bonded with the secondary hydroxyl group of B-CD while in aqueous and $\alpha-CD$ solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous B-CD solutions the enhancement of the Ia /Ia value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of B-CD as well as the lower polarity of the rim of the B-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/ B-CD complex in the presence of silver colloids.

Source Identification and Estimation of Source Apportionment of Ambient PM2.5 at Western National Park Site in USA (미국 서부 국립공원 지역의 미국 서부 국립공원 지역의 PM2.5에 대한 오염원 확인 및 기여도 추정)

  • Hwang, In-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.21-33
    • /
    • 2010
  • The objective of this study was to estimate the $PM_{2.5}$ source apportionment at the Pinnacles National Monument IMPROVE site in western coastal USA. The PMF was applied to identify the existing sources and apportion the $PM_{2.5}$ mass to each source. To analyze local source impacts from various wind directions, the NPR analysis was performed using source contribution results with the wind direction values measured at the site. Also, PSCF was applied to identify the locations by point sources relative to the back trajectories. A total of 1,634 samples were collected from March 1988 to May 2004 by IMPROVE sampler and 32 chemical species were analyzed by PIXE, PESA, XRF, IC, and TOR methods. The PMF modeling identified seven sources and the average mass was apportioned to gasoline vehicle, secondary sulfate, aged sea salt, secondary nitrate, wood/field burning, diesel emission, and soil, respectively. In this study, the average mass was apportioned to gasoline vehicle (33.0%), secondary sulfate (25.7%), aged sea salt (17.8%), and secondary nitrate (10.1%). Also, this study suggests the possible role for source apportionment study of $PM_{2.5}$ at similar areas such as wildness, national park, and coastal areas in Korea.

The PM2.5 Emission Source Contribution Analysis using The PMF Model in Urban Area (PMF 모델을 이용한 도심지역 PM2.5 오염원 기여도 분석)

  • Koo, Tai-Wan;Hong, Min-Sun;Moon, Su-Ho;Kim, Ho-Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.905-914
    • /
    • 2019
  • In this study, The PMF model was used to identify pollutant sources and their contribution to pollution sources of $PM_{2.5}$. The contribution of A city to each source was 19.8% for Secondary Sulfate, followed by Mobile 19.5%, Industry 16.0%, Biomass Buring 14.1%, Secondary Nitrate 14.1%, Oil Combustion 11.6%, Aged Sea Salt 2.6%, Soil 2.5% and so on. Sulfate and Ammonium concentrations were the highest contributing sources in the source profile, which was analyzed to be Secondary Aerosols produced by Photochemical Reactions of gaseous precursors (SOx and ammonia gas) in the atmosphere.

Analysis of Schottky Barrier Height in Small Contacts Using a Thermionic-Field Emission Model

  • Jang, Moon-Gyu;Lee, Jung-Hwan
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • This paper reports on estimating the Schottky barrier height of small contacts using a thermionic-field emission model. Our results indicate that the logarithmic plot of the current as a function of bias voltage across the Schottky diode gives a linear relationship, while the plot as a function of the total applied voltage across a metal-silicon contact gives a parabolic relationship. The Schottky barrier height is extracted from the slope of the linear line resulting from the logarithmic plot of current versus bias voltage across the Schottky diode. The result reveals that the barrier height decreases from 0.6 eV to 0.49 eV when the thickness of the barrier metal is increased from 500 ${\AA}$ to 900 ${\AA}$. The extracted impurity concentration at the contact interface changes slightly with different Ti thicknesses with its maximum value at about $2.9{\times}10^{20}\;cm^{-3}$, which agrees well with the results from secondary ion mass spectroscopy (SIMS) measurements.

  • PDF