• Title/Summary/Keyword: secondary currents

Search Result 143, Processing Time 0.026 seconds

Performance Analysis on a Low Pass Filter of a CT Saturation Detecting Algorithm Using Difference of the Secondary Current (차분을 이용한 변류기 포화 검출 알고리즘의 저역통과 필터의 영향 분석)

  • Kang, Young-Cheol;Ok, Seung-Hun;Yun, Jae-Sung;Kim, Dae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.249-251
    • /
    • 2001
  • This paper presents performance analysis on a low pass filter of a CT saturation detecting algorithm using difference. At the instants of beginning/end of saturation, the shapes of the secondary current are changed significantly though secondary currents are continuous. At the instants, the second-order or third-order difference of the secondary current has big values because of discontinuity of the first order difference. Thus, the third difference of the current is used to detect the beginning/end of CT saturation. An antialiasing low pass filter removes high frequency components and causes phase lag. A CT saturation detecting algorithm using difference of CT secondary currents is affected by the low pass filter. The algorithm is tested with cutoff frequencies of the filter for the two sampling rates of 64[S/C] and 32 [S/C]. The results of various test cases indicate satisfactory performance of the algorithm.

  • PDF

Characteristic Analysis of a Linear Induction Motor According to Various Positions of the Moving Cage-type Secondary (유한길이의 농형 2차측을 갖는 선형유도전동기의 2차측 이동 위치에 따른 특성 해석)

  • Park, Seung-Chan;Kim, Byung-Tack
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.583-585
    • /
    • 2002
  • In this paper. the characteristics of a linear induction motor with the moving cage-type secondary are analyzed using finite element method. Thus thrust. normal force and the secondary bar currents distribution are obtained for different positions of the moving secondary.

  • PDF

An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation (154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

Design of a Linear Induction Motor with Squirrel Cage Secondary (농형 2차측을 갖는 선형유도전동기의 설계)

  • Park, Seung-Chan;Woo, Kyung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, design procedures of a linear induction motor(LIM) with squirrel cage secondary are presented. The electrical and magnetic loadings are determined by the conventional criteria of the linear induction motors with sheet secondary. Electromagnetic fields of the designed motor are analyzed using finite element method, and characteristics of thrust and currents are presented.

  • PDF

Winding Disposition to Minimize the Output Interference of Transformers for the High-Speed EMU (동력 분산형 고속철도용 변압기의 출력 간섭현상을 저감시키기 위한 권선 배치 방법)

  • Park, Byoung-Gun;Ahn, Sung-Kuk;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1873-1877
    • /
    • 2010
  • In the high-speed EMU, the modularized traction converter produces the significant harmonic currents caused from the switching behavior of a power converter. These harmonic currents bring the interference among the traction equipment. One way to minimize the interference is to design the secondary windings of a power transformer decoupled magnetically as possible. This paper presents a magnetic field analysis on a winding disposition to clarify an impact on magnetic decoupling between secondary windings, under a limited height of a train. Two winding dispositions for a single-phase shell-type transformer are constructed and simulated by a three-dimensional finite elements method (FEM) model. Two different winding dispositions are constructed and simulated by three-dimensional FEM model using Maxwell3D.

  • PDF

Optimal Construction of Rotary-Linear Induction Motor (회전-리니어 병용 유도전동기의 특성해석)

  • Onuki, Takashi;Jeon, Woo-Jin;Tanabiki, Masamoto;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.130-132
    • /
    • 1997
  • In this paper, we propose a new type of tubular linear induction motor(TLIM) with two-dimensional motion. The proposed motor consists of four short primary LIMs arranged on a same circumference and a common secondary. By adopting independently energized ring-windings to the primary, we can expect the reduction of coil-end region and the freedom of alternating current supply. The secondary conductor is capable of producing anyone of rotary, linear, and helical motions by controlling the phase of supply currents in each primary winding. From the 3-D finite element analysis and the experiment, we derive the feeding conditions to increase the subsidiary rotary-force and an optimal arrangement of primary currents to reduce the number of slot.

  • PDF

Wound-rotor induction generator system for random wave input power

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this paper, the two-axis theory is adopted to analyze the secondary excited induction generator applied to random wave input generation system. The analysis by the two-axis theory helps to know the transmitted power of the induction machine. The electric variables, like as primary and secondary currents, voltages, and electric output power, were able to express as equations. These equations are help to simulate the generation system numerical model and to know the transient state of the system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled VSI connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this method, the input torque simulator in the laboratory to drive the secondary excited results show the advantage of secondary excited induction generator system for the random input wave generation system.

The Analysis of Transverse Edge Effect of Linear Induction Motor by using Finite Element Method (유한요소법을 이용한 선형유도전동기의 횡방향 모서리 효과 분석)

  • Lee, Sung-Gu;Bae, Jae-Nam;Lee, Hyung-Woo;Park, Hyun-June;Kwon, Sam-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2194-2198
    • /
    • 2008
  • In this paper, the construction of secondary reaction plate is analyzed by 3-D Finite Element Method(3-D FEM) to consider the influence of its variation on the transverse edge effect of LIM. The effective 3-D analysis model for considering the transverse edge effect caused by the finite widths of the primary and the secondary is proposed. The simple method measuring the transverse edge effect by using the patterns of currents induced in the secondary reaction plate is also proposed. With this effective analysis method, various models of secondary reaction plate with overhang and cap has been analyzed to consider the relationship between the construction of secondary reaction plate and the transverse edge effect of LIM.

Compensation of the secondary voltage of a three winding coupling capacitor voltage transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.18-20
    • /
    • 2007
  • A coupling capacitor voltage transformer (CCVT) is used in an extra high voltage power system to obtain the standard low voltage signal for protection and measurement. To suppress the effects of ferro-resonance more effectively, a three winding CCVT is used. This paper proposes an algorithm for compensating the secondary voltage of the three winding CCVT. With the secondary voltage of the three winding CCVT, the secondary and tertiary currents are obtained; the primary winding current is obtained by considering non-linear characteristics of the core; the voltage across the capacitor and the inductor are calculated and then added to the measured voltage to compensate the secondary voltage. Test results indicate that the algorithm can reduce the errors of the three winding CCVT significantly.

  • PDF